您的当前位置:首页正文

h2o2处理后的黄铜矿和黄铁矿对黄药的吸附作用及其浮选分离

2023-10-25 来源:汇智旅游网
Trans.NonferrousMet.Soc.China29(2019)2604−2614XanthateinteractionandflotationseparationofH2O2-treatedchalcopyriteandpyriteSultanAhmedKHOSO1,2,Yue-huaHU1,2,FeiLÜ1,2,YaGAO1,2,Run-qingLIU1,2,WeiSUN1,2

1.SchoolofMineralsProcessingandBioengineering,CentralSouthUniversity,Changsha410083,China;2.KeyLaboratoryofHunanProvinceforCleanandEfficientUtilizationofStrategicCalciumContainingMineralsResources,CentralSouthUniversity,Changsha410083,ChinaReceived6December2018;accepted18June2019Abstract:ThisstudyinvestigatedtheeffectsofH2O2treatmentonxanthateinteractionandflotationseparationofchalcopyriteandpyritebymakinguseofaseriesoflaboratoryflotationexperimentsandsurfaceanalysistechniques.FlotationtestresultsshowedthatH2O2treatmentinfluencedtheflotationbehaviorsofthetwominerals;however,flotationofpyritewasdepressedmoresignificantlythanthatofthechalcopyrite.Underwell-controlledH2O2concentration,theselectiveseparationofchalcopyritefrompyritewasrealizedatpH9.0,atwhichtherecoveryofchalcopyritewasover84%andthatofpyritewaslessthan24%.Zetapotential,UV−visibleandIRspectrummeasurementsrevealedthatthecollectorinteracteddifferentlywiththetwomineralsafterH2O2treatment,andthesurfaceofchalcopyriteadsorbedmuchgreateramountofxanthatethanthatofthepyrite.IRandXPSanalysesshowedthattheH2O2treatmentsignificantlychangedthesurfacepropertiesofpyritetoveryhydrophilicspeciesthatinhibitedtheadsorptionofcollectorandthusdepressedthefloatabilityofpyrite.While,thesurfaceofchalcopyriteremainedmildlyinerttoH2O2,asaresult,theadsorptionofxanthateanditsoxidationtodixanthogenwereveryeffective,whichenhancedtheflotationofchalcopyrite.Keywords:H2O2treatment;selectiveseparation;xanthateinteraction;chalcopyrite;pyrite1Introduction

Pyrite(irondisulfide,FeS2)isthedominantganguemineralinflotationseparationofmultiplesulfideminerals[1].Copper-containingsulfidemineralsoftencoexistwiththepyriteinthenaturaloredeposits.PyriteisreadilyfloatablemineraluntilpH11inthepresenceofthiolcollectors,suchasxanthate[2].Consequently,themisreportingofpyriteintheflotationconcentratesdilutesthegradeofconcentratesbyincreasingthecontentsofsulfurandiron,andcausestheenvironmentalpollutionthroughSO2emissionsduringsmeltingprocesses[3−5].Hence,thereareseveraleconomicandenvironmentalbenefitsofpyriterejectionfromnaturaloresbeforetheirpyroprocessing.Routinely,thelimeandcyanidesaregenerallyusedinthecopperoreindustryasthemaindepressantsofpyritefloatability.However,theobviousdrawbacksofusingtheseinorganicreagentsarethattheyareveryexpensiveandhazardoustohumanandenvironment.Toreplacehighlytoxicdepressantswithenvironmentallybenignreagents,severalorganicpolymershavealsobeenused.Theorganicdepressantshavetheirownbenefitsoftheenvironmentalfriendliness,superiorselectivity,widelyavailableandcost-effectivecharacteristics[2].Themostcommonorganicdepressantsincludedextrin[6],biopolymer[7],tannin[8],chitosan[2]andlignosulphonates[3].Themajorityofthesepolymersexhibitedpromisingpossibilitiesinthepyriterejectionwhiletheyareusedinthelaboratoryflotationexperimentsundercarefullycontrolledconditions.However,thepyritegenerallyexhibitsdifferentfloatabilityperformancesindifferentmineraldeposits,wherethelatticedefectandsurfacestructureinhomogeneityofpyriteareinconsistent[9,10].Allthesecharacteristicscreatedifficultiesforfindinganeffectivedepressantofpyriteforcopperoreindustry.Foundationitem:Projects(51704329,51705540)supportedbytheNationalNaturalScienceFoundationofChina;Project(2015CX005)supportedbytheInnovationDrivenPlanofCentralSouthUniversity,China;Project(B14034)supportedbytheNational“111”Project,China;Project(2018TP1002)supportedbytheCollaborativeInnovationCenterforCleanandEfficientUtilizationofStrategicMetalMineralResources,ChinaCorrespondingauthor:WeiSUN;Tel:+86-731-88830482;E-mail:sunmenghu@csu.edu.cnDOI:10.1016/S1003-6326(19)65167-8SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−26142605easeExtensivemineralsoftheselectiveliteratureflotationindicatesthatseparationthecomplexityoroxidation.issensitiveThealwaysdominatedbythelevelofofsurfacesulfidesurfacetothesurfacesoxidationofproceduresthesulfideandmineralsareverytype;sensitivepyriteoxidationislargelydependentonthetheextentmineralofchalcopyritetooxidation,andgalenafollowedarebycomparativelythesphaleritemoreandseparationtreatmentofsulfide[11].Formineralsthosebyreasons,meanstheselectiveVarious(NaClO),oxidizingproceduresisgainingimportanceofthedayoxidativebyday.hydrogenmanganeseagentsdioxidesuchas(MnOsodiumhypochlorite2),oxygen(Oemployedperoxide(HO2),22)andozone(O3separationofintheflotationtechnologyfor)thehaveselectivebeensimple,Amongsulfidesothers,mineralstheH[12,13].2O2treatmentisrelativelyenvironment.cost-effectiveseparationUsingandHlesshazardoustohumanand2Owasimprovedconductedofthemolybdenite2treatment,andchalcopyritethesuccessfulmineralsbearingrecoverybyofHIRAJIMAcoppermetaletfromal[12,13].theTheatpertainingverymineralslowintherealoreprocessingwasachievednickel-indicatetoconcentrationsthecomminutionofH2ofO2sulfide[14].LiteraturesofthattheHOminerals22formedduringthemillingflotabilitiesmineralsoxidation[15,16].hadMoreover,significanttheextentseffectsoftheontheirofofpyritebyHsurface2O2aremuchgreaterthanthetheothersulfideminerals[15],whichmaybeduethosetoofpyriteHhigheraffinityofthehydroxylFe(II)andandFe(III)hydroperoxylmetalradicals2O2towardsionsbehaviorsTherefore,surface(Fentononbyreaction).mineralogicalwithconsideringitsdifferentreactivitystructures,differentwemineralsalsohypothesizedofthethatcomplexH2O2couldflotationbeapotentialdepressantofregard,thiscircuitsstudywithinvestigatedxanthateasthethepyriteeffectscollector.inCu−FeofInHthis2O2treatmentchalcopyriteonthexanthateinteractionandfloatabilityofusingandpyriteandtheirselectiveseparationtheinvestigatedcollector.anindustrialTheflotationgradesodiumbehaviorbutylxanthate(SBX)asselectivethroughaseriesofsingleandandmechanismbinarymineralwerepotentialflotationexperiments,supplementedbythezetainfraredspectroscopy(IR)measurements,UV−visiblespectrumanalysis,(XPS).spectrumanalysisandX-rayphotoelectron2Experimental

2.1MineralsandreagentswerePurereceivedsamplesfromofYunfu,pyriteGuangdongandchalcopyriteProvince,mineralsChina.The1,XRDandXRFanalyses,showninFig.1andTablechalcopyriterespectively,handpicked,samples.confirmedThethesamplespuritywereofpyriteandporcelainofmaterials38−74millcrushedµmandfractionsievedandgroundinthelaboratorycarefullyfortoobtainflotationthemaximumexperiments.amountThetoX-ray≤5µmwithmeasurements,fluorescencefractionundersizefor<38µmwerefurtherground(XRF)theX-rayanalyses,diffractionzeta(XRD)potentialandXPSstoredspectrummeasurements.UV−visiblespectrum,ThegroundIRspectrumsamplesandcontrolledinHowever,conditionsthesealedtoglassbottlesunderthewell-weresamplesbeforeusinganyprotectmeasurement,themfromtheoxidation.groundconcentrationweremixedultrasonicationofwith50mLHNO3solutionwitharesultingfor11minmol/Laccordingandtreatedtounderthewater,subsequentlysuspensionwasRef.[13].Theimmersedfiltered,inrinsedacetonewithunderultrapuretheFig.1XRDpatternsofpuremineralsamplesofpyrite(a)andchalcopyrite(b)Table1XRFresultsofpuremineralsamples(wt.%)MineralCuFeSSiCaMgChalcopyrite30.4327.5830.460.970.660.71Pyrite−43.8349.591.110.560.532606SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−2614vacuum,ofoxidationthisstepandfinallywasthefreeze-driedremovalofoverthe24externalh.ThepurposesurfacetheSodiumproductsbutylfromthemineralsurfaces.ofpuritygreaterthanxanthate85%)(SBX,fromtheindustrialChemicalgradeFactorywithexperiments.Zhuzhou,China,fraction)TheanalyticalwasusedasgradethecollectorinflotationThewasusedforthesurfaceoxidationH2O2(30%,treatments.massfromanalyticaltheGuangdonggradeXilongterpineolChemical(purityCo.,greaterLtd.,than95%)hydroxidefrothingused(NaOH)agent.andThewasusedashydrochloricanalyticalgradesodium(DI)tomaintainthepHofthesolutions.acidThe(HCl)deionizedwereallexperiments.waterwitharesistivityof18.2MΩ·cmwasusedin2.2MineralchalcopyriteThegroundtreatmentpowderwithoftheH2O2

representativesamplewaterwasNaOHadjustedina50ormL-beaker,pyrite(2g)wasmixedwith30mLDIoftotherequiredandthepHofthesuspensionAfterwards,underthecontinuouslevelstirringbyaddingat650HClr/min.or(1−11conditionedmmol/L)thewasrequiredaddedconcentrationintotheofH2O2additionforthetotaltimeof3min.suspensionTheHand2OpulpFinally,wascanaffectthepulppH;therefore,thepHofthe2subsequenttheregularlytreatedmaintainedsuspensionatthewasrequiredusedinvalue.theabove.furtherflotationsurfacetests,analysisorfilteredmeasurementsandfreeze-driedthementionedfor2.3FlotationexperimentsSingleandexperimentsmachinewerebinaryperformedmineralselectiveflotationChina)ofwith(Exploringa40mL-plexiglassMachineryinthePlant,XFGChangchun,flotationthel650fromuntreatedr/min.mineralIneachorofHthesinglecellmineralatanimpellertests,2speedgof2O2-treatedmineralcell.2andmin,FollowingSection2.2thecollectorthewaspHtransferredtoa40mL-plexiglasssuspensionSBXadjustmentwasaddedwithtoastirringtimeof(115min,μL)conditionedandwastheaddedfor3min.Afterwards,thethesuspensionterpineolfrothtoandthecellwithaconditioningtimeof60min.Bothsinkandfrothsinkfractionsproductswerewereoven-driedcollectedforcalculation.°Cfor12andThehandthenweighedfortherecoveryatThetheaveragerecoveryexperimentswaswerereportedrepeatedasthethreefinaltimesdeterminedstandardunderusingdeviation,themeanrepresentedbyanerrorbar,value.wastests,InthetheeachsameofthethreemeasurementsHOofexperimentalthebinaryconditions.mineralselectiveflotation22-treatedmineralsweremanuallyblendedinchemicala1:1massratioforuseastheflotationfeedwithprocedurecompositioncollectorandthelistedinTable2.Theflotationtheflotationflotationsystemsandfrotherdosagewereusedtheinandtheadditionorderofthesametheasbinarythatmineralofsingleselectiverecoveryexceptselectiveandsolidflotationgradefortheflotationfeed.However,mineralthesystemsofmineralswereindeterminedthebinaryfrommineraltailingsmassandtheirdistributionchemicalbetweenassays.theconcentrateandtheTable2XRFresultsofmixtureofchalcopyriteandpyritetreatedbyH2O2(wt.%)CuFeSSiCaMgOthers15.5534.3843.581.010.430.57Bal.2.4ZetaaZetapotentialpotentialmeasurementsmeasurementswereconductedusingUK).ZETASIZERNano-Zs90series(MalvernInstruments,temperatureAllofthebackground((25±1)measurements°C)withwere1mmol/LperformedKNOatroom3asthewaselectrolytesolution.Themineralsuspensionuntreatedprepared40mineralsbydispersingintoa0.02gofthetreatedorstirredmLoftheKNO50mL-beakercontaining3solution,andthenAfterfor10mininthepresenceandabsencemagneticallyofSBX.pHcontainingofpermittingthesuspensionthecoarsergrainstosettlefor5min,thecapillarythefinerparticleswasnotedwasandthesupernatantmeasurementscellfortransferredtoasample,Theandtheweremeasurements.Thezetapotentialaveragedeterminedwasreportedthreeastimestheforeachpreviously.standarddeviationwasalsocalculatedasfinaldescribedvalue.2.5UV–visibleandTheusingafterUV−visiblespectrumspectraanalysisoftheSBXsolutionsbeforeJapan).a201theUV−visibleinteractionwithspectrophotometermineralswere(Shimazu,recordedsuspensionInorwaseachpreparedofthebymeasurements,dispersingthemineral35untreated10mLofthemineralsDIwater,intoandathen40magneticallymL-beaker2gofthecontainingtreatedstirredforpre-determinedmininthefugationconcentration.presenceofcollectorSBXwithaforprocessoftheresultingFollowingsolutionatthe9000centri-r/mindetermined20min,theusingthetheabsorbancequartzofthesupernatantwas((25±1)measurementscolorimetricutensil.Allof°C).wereperformedatroomtemperature2.6InfraredspectrumanalysisTheinfrared(IR)spectraofthemineralsamplesbeforeandafterthetreatmentwithH2O2andSBXwereSultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−26142607recordedinthewavenumberrangefrom4000to400cm−1usingtheIRAffinity−1spectrometer(ShimadzuCorporation,Kyoto,Japan).ForthisacquiringIRspectraoftheminerals,1.0wt.%oftherequiredmineralsamplewasmixedwiththespectroscopicgradeKBr.Mineralsampleswerepreparedasfollows:1.0gofthegroundpyriteorchalcopyritemineralbeforeandafterthetreatmentwithH2O2wasdispersedintoa40mL-plexiglasscellcontaining35mLDIwaterandconditionedfor15minwithandwithoutthepre-determineddosageofSBX.Finally,theresultingsuspensionswerefiltered,washedthreetimeswithDIwater,andfreeze-driedfor24hpriortoIRanalysis.Allofthemeasurementswereperformedatroomtemperature((25±1)°C).2.7X-rayphotoelectronspectroscopyanalysisTheX-rayphotoelectronspectra(XPS)ofFe2p,Cu2p,S2pandO1swererecordedfromthesurfaceofpyriteandchalcopyriteusinga1063XPSspectrometer(ThermoFisherScientific,USA)withAlKαasthesputteringsourceat12kVand6mA.Thetotalspectralenergyandthestepsizeweresettobe100.0and1.0eV,respectively.ThesamplepreparationprocedurewasthesameasthatdescribedinSection2.6.Allthemeasurementswereperformedatroomtemperature((25±1)°C).ThecollecteddatawereanalyzedusingthesoftwareXPSPeak(Version4.1).3Resultsanddiscussion

3.1SinglemineralflotationFigure2showstheflotationbehaviorsofpyriteandchalcopyritebeforeandafterthetreatmentwithH2O2asafunctionofpHinthepresenceofSBX.BeforetheH2O2treatment,boththepyriteandchalcopyritefollowedthesameflotationtrendswithSBXandtheirrecoveriesweremorethan80%,untilpH10.ThisresultindicatedthatSBXwassignificantlyadsorbedonthesurfacesofbothmineralsandthusenhancedtheirflotabilitiesinthewiderangeofpH5−10.AfterthetreatmentwithH2O2,theflotabilitiesofpyriteandchalcopyriteweredroppedsimultaneouslyandthepHhadaprofoundeffectontheirrecoveries.Interestingly,thedepressionofH2O2-treatedpyritewasmuchgreaterthanthatofH2O2-treatedchalcopyriteinthestudiedpHrangeof5−11,indicatingthatH2O2treatmenthadamuchgreateraffinitytowardsthepyritesurfacewhichinhibitedtheadsorptionofcollector.AsseeninFig.2,therecoveryofpyritewassteeplydroppedfrom83%to33%atpH5andthendecreasedfurthertobecomeverylow(20%)byincreasingthepHfrom5to11.Therecoveryofchalcopyritewasalsodroppedfrom81%to68%atpH5andthenincreasedwithincreasingpHandreachedabout80%atpH11.ThisimpliedthattheH2O2treatmenthadverylimitedinfluenceonthechalcopyrite,asaresult,itssurfaceadsorbedgreateramountofthecollectorthatenhanceditsflotation.Fig.2FlotationbehaviorsofchalcopyriteandpyritebeforeandaftertreatmentwithH2O2inthepresenceofSBXoptimumTheresultsshowninFig.2indicatedthatthedifferencedepressiontreatmentbetweentheofpyritechalcopyriteandtheandmaximumpyriterecoveryaftertheTherefore,withextendedsingleH2O2wereachievedatpH9orabove.concentrationsbyfixingmineralthepHfloatabilityaround9testsandwerevaryingfurtherthefloatationdroppedrecoveriesofH2Oof2.Figure3displaysthattheconcentration.simultaneouslypyriteagainHowever,withandincreasingchalcopyritetheHwere2O2mineralsnotedrecoveryatbetweentheflotationaremarkablerecoveriesdifferenceofthewastwotoand12%theninofbecamethepyritethelowHwasH2droppedO2concentration.significantlyAsfromseen,40%the2O2stableconcentrationandunchangedrangeofwith1−7mmol/L,furtherFig.3FlotationrecoveriesofchalcopyriteandpyriteasfunctionofH2O2concentrationinthepresenceofSBX2608SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−2614increasingHoftheH2O2concentration.While,inthesamewas2O2excessiveslightlyconcentrationdecreasedrange,fromtherecovery85%toof70%,chalcopyriteandslightlySinglenegativeconcentrationimpactgreateronthethanchalcopyrite7mmol/Lhadtheathatpyritethemineralseparationfloatabilitywindowbetweenresultsthethereforechalcopyritesuggestedrecovery.andtreatmentcanpresenceofwithbepossibleSBXtheasthelowatcollector.concentrationlowalkalineofpHHaftertheir2O2inthe3.2ZetacontainingThepotentialsurfacethecopper,leadchargeandironofvariesthesulfidesignificantlymineralspotentialpre-treatmentchangesmeasurementsactions.wereInperformedthisregard,withtomonitorthezetachalcopyriteinelectricanduntreatedSBX.Figurebeforecharge4andshowsafteronthesurfacesofpyriteandthethatthethetreatmentzetawithH2O2andresulthadFurthermore,isanmineralsconsistentisoelectricwasnegativeatthetestedpotentialpH(5−11)ofwithpointthe(IEP)previouslessliteraturesthanpH5;[1,17].thisgraduallyofdecreasedthezetawithpotentialsincreasingofpHtheseduemineralstowereSBXhydroxylalone,theionszetaonpotentialstheirsurfaces.ofbothInthemineralspresenceadsorptionwereofFig.4Zetapotentialsofpyrite(a)andchalcopyrite(b)beforeandaftertreatmentwithH2O2intheabsenceandpresenceofSBXsignificantlywerechalcopyrite;stronglydecreased,absorbedindicatingontothesurfacesthatxanthateofpyriteanionsandmineralhighlyfloatablefloatabilitythisresultwithteststhereforeSBX.inwhichvalidatedbothmineralsthesinglewerechalcopyriteAftertheandtreatmentpyritewithshiftedH2O2to,themorezetapositivepotentialsside,ofshowingthattheH2O2treatmentmodifiedtheirsurfacecharacteristics.thepositiveshiftHowever,inthezetacomparedpotentialwithofpyritechalcopyrite,particleswasmuchmoreobviousasitsIEPshiftedtothehigherpHofgreateraboutaffinity6.5,indicatingonthesurfacethatH2ofO2muchpyritetreatmentthanthathadofthechalcopyrite.Moreover,thesubsequentadditionofSBXHdidnotpyrite,significantlyrepresentingdecreasethatthethezetapyritepotentialsurfaceof2O2-treatedwashighlyoxidizedbyH2O2.Therefore,thestrongestdepressionflotationtestsofmayH2O2be-treatedattributedpyritetonoinorsinglelessadsorptionmineralofthecollectoronthepyritesurface.Ontheotherhand,thewaszetagreatlypotentialdecreasedofH2toO2more-treatednegativechalcopyritevaluesaftersurfacethesubsequentadditionofSBX,indicatingthattheadsorptionwasmoreefficient.ofthecollectorTheeffectiveontheadsorptionchalcopyriteofSBXsurfaceontothechalcopyritemightbeduetothelowersurfaceoxidationshiftsinthebyzetaH2O2potentialtreatment,ofaschalcopyriteindicatedbysurfacetheminoraftertheH2O2treatment.Therefore,thehigherflotabilitiesofH2mayO2-treatedbeattributedchalcopyritetotheeffectiveinsingleadsorptionmineralflotationofcollectortestsontochalcopyritesurfacesTheoxidativesurface.solutionintotreatmentcandissolvethemineralsurfacesandthetheirprecipitationrespectiveofmetalthesespeciesspeciesontointhethemineralsresultspyritesurface[18].TheinandFeO,theincreaseCu(OH)FeOOHofandsurfaceFepotentialsof2(SO4)3fromthe2,Cu2chalcopyriteoxidationarespeciessurfacearenotedasOtheandmostCuOdominantfromtheMoreover,largelythedependentandtheirFeO,FeOOHontheformationanddegreeFeofandoxidationconcentration[18].2(SO4strongadsorptionhydrophilicspecies)3arerelativelyonflotabilitiesthemineralofcollectoranditsthatoxidationgreatlytodixanthogeninhibittheconfirmedwiththat[18].surfacesthexanthateSeveralandthusdepresstheirhasotherinvestigationshaveironlowerhydroxidesthecopperorhydroxidemuchhigherinteractionsulfatespeciesprecipitatescomparedwithbeFeattributedadsorptiontoofthecollectorpresenceonofthe[19].FeO,pyriteTherefore,FeOOHsurfacemaytheand2(SO4contrary,)3speciestheeffectiveresultedadsorptionfromtheH2ofO2thecollectortreatment.ontheToSultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−26142609chalcopyritelowersurfacesurfaceoxidationmayproductsbeattributedbyHtothepresenceof2O2.3.3UV−visibleZetapotentialspectrumresultshaveshownthattheH2mineraltheadsorptionofcollectorontoO2

treatmentaffectsmeasurements,surfaces.knowcantheinteractionUV−visibleTovalidatethezetapotentialtheofSBXspectrawithwererecordedtomineralsbeseen301thereinwasFig.an5,intensivebeforemineralsurfaces.Asxanthatetheinteractionpeakaroundwithdisappearednm[20],withHpyriteandfromwhichthensignificantlydecreasedorchalcopyritethesolutionbeforewhenxanthateinteracteddecreasedOtheirtreatmentwith22.Apparently,chalcopyrite,afterthetheintensityinteractionofxanthatepeakwasalsothatHthexanthatethusconfirmingwasstronglythezetawithpotentialH2O2-treatedadsorbedresultsonto2depletionO2-treatedchalcopyritesurface.Thesignificantuntreatedofindicatedmineralsxanthateandpeaktheaftertheinteractionwithsurfaces.surfacesThethecompletexanthatewasadsorptionH2O2-treatedchalcopyritechemicallyofxanthateadsorbedontheirchemicalofpyriteandchalcopyriteandformedonthethemetalsTherefore,oncoordinationwithiron(Fe)andcopper(Cu)inthespectraatheirbroadsurfacesthroughitssulfur(S)atoms.ofuntreatedabsorbancemineralsappearedandat420−450Hnm2O2chalcopyritebondspeak[20].mightbeattributedtoFe—Sand-treatedCu—SwithwasTothecontrary,theintensityofthexanthatecollectorHnotsignificantlydecreasedaftertheinteraction2Oresultswas2-treatedadsorbedpyrite,onindicatingtheHthatlessamountof2O2-treatedpyrite.Thesemeasurementsareininteractionsurface.betweenandgoodagreementwithzetapotentialtheshowedxanthatethatandthereHwastheweak2O2-treatedpyriteFig.5UV−visiblespectraofSBXsolutionbeforeandafterinteractionwithminerals3.4InfraredbestInfraredspectrumsurfacetools(IR)spectrumspectroscopyisoneoftheofpropertiestoobtainofmineralsthedetailandunderstandingadsorptionmechanismoftheofflotationpresencethetreatedreagentsSBX-treatedofSBXandonmineralsurfaces.TheIRspectraareuntreatedshowninmineralsFig.6.intheabsenceandadsorptionsminerals,allthepossibleInpeakstheIRofspectraxanthateofpyritesurfaceswerearoundobserved1145,on1275thechalcopyriteand2926andxanthate−iron/coppertothegroups,compounds,stretchingcm−1correspondingdixanthogenvibrationsandofthestronglybeforeabsorbedrespectivelyonthe[9],pyriteindicatingthatSBXCHwas2potentialthetreatmentwithHandchalcopyritesurfaces2O2.ThisanalysisuntreatedthatmeasurementsmineralsxanthateandwasthussubstantiallyandUV−visiblevalidatedthezetaenhancedtheiradsorbedspectrumfloatability.ontheFig.6Infraredspectraofpyrite(a)andchalcopyrite(b)beforeandaftertreatmentwithH2O2intheabsenceandpresenceofSBXtreatmentTheIRwaswithspectraHofchalcopyriteandpyriteafterthe2O2revealedasignificantdifferencebehaviorsactuallyInthespectrawithcontributedofSBXHandthustotheirdifferentdifferentflotationinteractionthattrends.2O2-treatedpyrite,thecharacteristic2610SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−2614peaksaroundstretchingSO24andthatvibrationsthat1086.35atof825.08and597.21cm−1wereassignedtoFeOandcm−1FeOOHcorresponded[21],indicatingtothetreatmentthepyriteofthatxanthatewithonHsurfacewashighlyoxidizedafterthethe2O2H.Hence,noorlessadsorptionpeaks2O2-treateddixanthogentheadsorptionhydrophilicwereofpyritesurfacerevealedsignificantlycollectoranditsoxidationtowithtreatmentpyrite,speciesthereonwaspyriteverysurfaceblockedbythelimited[18,22].effectComparedofH2O2treatedSO24andonCu(OH)thechalcopyritesurface;minorpeaksof2werenotedinthespectraofH2O2-chalcopyritechalcopyrite.(1088.73Thus,cm−1containedHowever,)andCuOsomeorCuOweakerthetreatedsignalsandofuntreatedSO242(788.13cm−1)mineralthetheseflotationslightdepressiontestsmayofbechalcopyriteinthesingle[23].strongoxidizedspeciesonitssurfacedue[24].totheInaddition,presencetheofdixanthogenadsorptioncanonthepeaksHofSBXanditsoxidationto2O21274.92beseenindicatingcm−1around(dixanthogen)1145.21-treatedchalcopyritesurfaceandcm−1(copper–xanthate),adsorbedthattheH2925.72cm−1(CH2),2O2-treatedchalcopyriteextentthanofmuchsurfacegreateroxidationamountofpyriteofSBX.wasApparently,stillthestrongthatoftheHaffiliationofchalcopyrite,ofhydroxylwhichandmighthydroperoxylbemuchduegreaterradicalstothe2O2withferrous/ferricironionsofthepyritethemaymineralogicalFentonreactionstructuremechanismofthe[25].pyriteThedifferencethroughinbehaviorsalsowithbeoneHreasonoftheirdifferentandchalcopyriteinteraction2OzetaTheanalysispotentialIRspectrum2[11,24].measurementsresultsandthereforeUV−visibleconfirmedspectrumtheitssurfaceoxidationandshowedtodixanthogenthattheadsorptionontheHofcollectorandFeO,weresignificantly2O2-treatedpyriteinhibitedbythepresenceoffromverytheFeOOHHandSO24hydrophilicspeciesresulted2O2treatmentofsurface,limitedeffectsofHpyrite.Tothecontrary,dueto2O2treatmentoxidationthechalcopyritetoadsorptionsurfacedixanthogenofcollectoronthechalcopyriteweremoreeffective.ontheHandits2O2-treated3.5XPSextentsThespectrumIRspectrumchalcopyriteoftheresultshaveshownthatdifferentbehaviorscontributedsurfaceoxidationspeciesonpyriteandhydrophilicwithmineralsorSBX.IttoisalsotheirwidelydifferentbelievedinteractionthattheirandimportantaregreatlyhydrophobicaffectedcharacteristicsbythechemicalofthestatesulfideofspectraO[13].ofFeTherefore,surface2p,Cu2p,inspeciesSthis2pandwork,suchO1stheasFe,Cu,SspecieshighresolutionwerealsorecordedorderchemistrytofromgaintheasurfacesfullunderstandingofpyriteandofchalcopyriteintreatmentwithofHthesemineralsbeforeandtheaftersurfacethe2O2pyriteInshownthehighinFig.resolution.7,thecharacteristicXPSspectrapeaksofatuntreated707.91and162.82720.71eVeVfromfromthetheSFe2p2pspectraspectracorrespondedand161.74andtospin-orbitalsof2p3/2and2p1/2,respectively[14,22].The529.90Oand1s530.42spectraeVindicatedcorrespondedthatthetoOpeaksaround2−and—OH,Fig.7HighresolutionXPSspectraofpyritebeforeandaftertreatmentwithH2O2:(a)Fe2p;(b)S2p;(c)O1sSultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−26142611respectively[26].ItisgenerallyconsideredthattheFe(III)andFe(II)oxideshavethebindingenergiesaround530.20eV[27],thusthepeakatabindingenergyof530.42eVcanbeallottedtoironoxide.Asshown,afterthetreatmentwithH2O2,allofthethreespectraindicatedmuchgreaterchangestothesurfaceofpyrite,indicatingthatthepyritesurfacewassufficientlyoxidizedbyH2O2.IntheFe2pspectraoftreatedpyrite,thepeaksat711.25and725.20eVand713.05and726.60eVwereassignedtothebindingenergiesofFeO/FeOOHandFe2(SO4)3species,respectively[22,28].TheS2pspectratreatedbyH2O2confirmedthepresenceofFe2(SO4)3peaksat167.99and169.01eV[14,29].ThedeconvolutionoftheO1sspectraalsosupportstheFeO/FeOOHandFe2(SO4)3peaksat531.22and532.02eV,respectively[27,29].TheseresultsthereforeconfirmedtheIRspectrummeasurementsandindicatedthatthesurfaceofpyritewassignificantlyoxidizedbyH2O2treatmentanditssurfacecontainedsufficientamountofFeO/FeOOHandFe2(SO4)3likehydrophilicspecies.InthehighresolutionXPSspectraofchalcopyriteshowninFig.8,thebindingenergiesat932.12and951.90eVfromCu2pspectra,708.14and721.61eVfromFe2pspectra,and161.44and162.58eVfromS2pspectracorrespondedtospin-orbitalsof2p3/2and2p1/2respectively[13,14,30].IntheO1sspectra,thebindingenergiesaround529.80and530.43eVcorrespondedtothelatticeoxygenandadsorbedoxygen,respectively[31].Someweakerbindingenergiesaround933.17and935.07eVfromtheCu2pspectraand530.43eVfromO1sspectrasignifiedthepresenceofCuOorCuO2peaksontheuntreatedchalcopyritesurface[12,27,31−34],indicatingthatchalcopyritesurfacewasalsoslightlyoxidizedduringthesamplepreparation.BycomparingthespectraofchalcopyritebeforeandafterthetreatmentwithH2O2,nosignificantchangeswerenoted,thussuggestingthattherewerethenegligibleeffectsofH2O2onthechalcopyritesurface.Asseenclearly,therewerenosignificantevidencesofthespeciesfromtheS2pandO1sspectraofH2O2-SO24treatedchalcopyrite.Hence,theseresultswerealsoconsistentwiththeIRspectrumanalysisandrevealedthatthechalcopyritesurfaceremainedmildlyinerttoH2O2treatmentattheinvestigatedconcentrations.3.6SelectiveflotationAftergainingafullunderstandingontheeffectsofH2O2treatmentonthexanthateinteractionandfloatabilityofindividualminerals,furtherselectiveflotationexperimentsonthemixtureofH2O2-treatedmineralswerecarriedoutatpH9withSBXFig.8HighresolutionXPSspectraofchalcopyritebeforeandaftertreatmentwithH2O2:(a)Cu2p;(b)Fe2p;(c)S2p;(d)O1s2612SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−2614concentrationmanuallyflotationmixedof17inamg/L.massForratiothis,of1:1theformineralsuseasweretheTablefeedwiththechemicalcompositionslistedinchalcopyrite2.In(i.e.,andadditionpyrite,tothethemineralgradesrecoveryandrecoveriesofindexRdifferencesalsocalculated(i.e.,chalcopyriterecovery−Rpyriteratio)andofchalcopyritetheseparationtopyrite)selectivitywereandseparationrecoveryInFig.9(a),andpresentedinFig.9.ofchalcopyritethesufficientindicatedimprovementthattheintheselectivegradebyToincreasingbetweenHthechalcopyriteandpyriteoccurred2O2concentrationfromcalledattainconcentration‘‘trade-offabalancebetweentherecovery1toand5grade,mmol/L.soconcentrationrangedomain”,of3−5wasmmol/L.foundWithininHthis2O2chalcopyriteandreachedrange,both84.71%thegradeand83.11%,andrecoveryrespectively,oftheexcessivethoseimpactconcentrationofpyritewereoflessHOthan20%.However,the22hadaslightlynegativeshowedonthechalcopyriterecovery.Figure9(a)furtherchalcopyritethattheflotationconcentratecontainedacomparedrecoveryAsimilartothatgradeimprovementofnearly70%differencetrendoftheandcaninitialseparationbeseenflotationinfeedinTable2.selectivityFig.9(b),indexboththeofFig.9Selectiveflotationresults:(a)Recoveryandgradeofminerals;(b)Separationselectivityindexandrecoverydifferencesofmineralstwomannerminerals5differencemmol/L.byAtincreasingwereincreased5mmol/LHinthestraightforward2OH2concentrationupto2O2,bothreached5.58%,atandthethemaximumselectivityindexofthesetherecoverymineralsexcessiverespectively.influencesdosageofFigurevalues9(b)alsoaboutshowed68.14%thatandthepyrite,ontheselectiveH2Oseparation2hadsomewhatofchalcopyritenegativethemineralbinaryindicatingmineralthatselectivethesameflotationphenomenonandasoccurredinshownHinfloatabilityFig.9clearlytests.Theindicatedselectivethatthatflotationinthethesurfaceresultssingleofof2O2-treatedchalcopyriteadsorbedmuchtheSBXthanthatofHgreateramount2O2-treatedpyrite.Moreover,suspension,Hmineralswereplacedtogetherinwhen2O2-treatedthethemixture.chalcopyritethesurfaceSBXwasandpreferentiallythusalloweditadsorbedtofloatinontothethatimpacttheFromexcessiveallofthemicroflotationresults,itwasnotedtheonthechalcopyriteconcentrationofH2O2hasanegativeNOOSHABADIselectiveseparationrecovery;andthus,onformedetal[15]ofchalcopyriteandpyrite.significantduringthemillingofalsosulfidereportedmineralsthatH2O2chalcopyriteeffectsofintheonpresencetheirflotabilities.hastheofBothpyriteandFeOOHtheirflotation.andsurfacesSO2withtheformationH2O2induceoftheoxidation4speciesthatcausetheirthedepressionhydrophilicinselectiveHflotationHIRAJIMAofmolybdeniteetal[12,13]fromchalcopyriteconductedwiththeconcentration2O2andtheirchalcopyrite.ofHresultssuggestedthatthehigher2oreCHIMONYOO2resultedetalin[14]thelowerworkedfloatabilityofthatcontainingcopperatverylowcopperconcentrationsandnickelofmineralsHandonreportedthereal2O2,therecoveryofhypothesizedBasedincreasedonsignificantly.sulfatethattheattheabovehighreportedconcentrationstudies,ofHwealsosurface,speciesmaybeformedonthechalcopyrite2O2,theHowever,whichtreatmentunderresultedthewell-controlledinpooradsorptionconditions,withxanthate.theHchalcopyritecanpresenceandproducepyritethe2O2ateffectiveseparationbetweenTherefore,ofSBX,aswellslightdemonstratedalkalinepHinFig.inthe9.widelytoavailabletheH2andO2,cost-effective,whichisrelativelynon-hazardous,conventionalbeusedasanalternativedepressanthasagreatinthepotentialCu−Fecollector.flotationcircuitswithxanthateasthe4Conclusions

pyrite(1)muchThestrongerH2O2treatmentthanthatdepressedofthechalcopyritetheflotationwithofSultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−26142613sodiumselectivebutylwasseparationxanthatebetween(SBX)theaschalcopyritethecollector.andThebestchalcopyriterealizedlessthanwasatnearlypH9,toat84%whichandthattheofrecoverypyritepyritewasofmeasurements(2)The20%.zetapotential,UV−visibleandadsorptionchalcopyriteofxanthateindicatedonthethatsurfacestheinteractionIRspectrumofHandtreatedweremuchgreaterthanthat2Oon2-treatedH2O2indicated(3)pyrite.-TheoxidizedthatIRandtheXPSsurfacespectrummeasurementsfurtherandWhile,FeandcoveredwiththeofhydrophilicpyritewasFeO,seriouslyFeOOH2toHthe(SOsurface4)3speciesofchalcopyriteafterthetreatmentremainedmildlywithHinert2O2.2O2attheinvestigatedconcentrations.andcontributedchalcopyrite(4)DifferentsurfacesextentsofafteroxidationthetreatmentspecieswithonpyritexanthateandtothustheirH2O2thedifferentdifferentflotationinteractiontrends.behaviorwithReferences

[1]KHOSOSA,HUYue-hua,LIURun-qing,TIANMeng-jie,SUNWei,GAOYa,HANHai-sheng,GAOZhi-yong.SelectivedepressionofpyritewithanovelfunctionallymodifiedbiopolymerinaCu−Feflotationsystem[J].MineralsEngineering,2019,135:55−63.[2]HUANGPeng,CAOMing-li,LIUQi.SelectivedepressionofpyritewithchitosaninPb−Fesulfideflotation[J].MineralsEngineering,2013,47(3):45−51.[3]MUYu-fan,PENGYong-jun,LAUTENRA.ThemechanismofpyritedepressionatacidicpHbylignosulfonate-basedbiopolymerswithdifferentmolecularcompositions[J].MineralsEngineering,2016,92:37−46.[4]KHOSOSA,ABROMI,AGHEEMMH.MineralogicalstudyofZardKohandKulliKohironoredepositsofPakistan[J].MehranUniversityResearchJournalofEngineeringandTechnology,2017,36(4):1017−1024.[5]KHOSOSA,ABROMI,AGHEEMMH.EvaluationofmeshofliberationofZardKohandKulliKohironoresofPakistan[J].MehranUniversityResearchJournalofEngineeringandTechnology,2018,37(4):569−580.[6]VALDIVIESOAL,CERVANTESTC,SONGS,CABRERAAR,LASKOWSKIJS.Dextrinasanon-toxicdepressantforpyriteinflotationwithxanthatesascollector[J].MineralsEngineering,2004,17(9):1001−1006.[7]MUYu-fan,PENGYong-jun,LAUTENRA.Thedepressionofcopper-activatedpyriteinflotationbybiopolymerswithdifferentcompositions[J].MineralsEngineering,2016,96−97:113−122.[8]SARQUÍSPE,MENÉNDEZ-AGUADOJM,MAHAMUDMM,DZIOBAR.Tannins:Theorganicdepressantsalternativeinselectiveflotationofsulfides[J].JournalofCleanerProduction,2014,84(1):723−726.[9]WANGZhen,QIANYun-lou,XULongHua,DAIBo,XIAOJunHui,FUKai-bin.Selectivechalcopyriteflotationfrompyritewithglycerine−xanthateasdepressant[J].MineralsEngineering,2015,74:86−90.[10]CHANDRAAP,GERSONAR.Areviewofthefundamentalstudiesofthecopperactivationmechanismsforselectiveflotationofthesulfideminerals,sphaleriteandpyrite[J].AdvColloidInterfaceSci,2009,145(1):97−110.[11]HONGG,CHOIJ,HANY,YOOK,KIMK,KIMSB,KIMH.Relationshipbetweensurfacecharacteristicsandfloatabilityinrepresentativesulfideminerals:Roleofsurfaceoxidation[J].MaterialsTransactions,2017,58(7):1069−1075.[12]HIRAJIMAT,MIKIH,SUYANTARAGPW,MATSUOKAH,ELMAHDYAM,SASAKIK,IMAIZUMIY,KUROIWAS.SelectiveflotationofchalcopyriteandmolybdenitewithH2O2oxidation[J].MineralsEngineering,2017,100:83−92.[13]SUYANTARAGPW,HIRAJIMAT,MIKIH,SASAKIK,YAMANEM,TAKIDAE,KUROIWAS,IMAIZUMIY.SelectiveflotationofchalcopyriteandmolybdeniteusingH2O2oxidationmethodwiththeadditionofferroussulfate[J].MineralsEngineering,2018,122:312−326.[14]CHIMONYOW,WIESEJ,CORINK,O'CONNORC.Theuseofoxidisingagentsforcontrolofelectrochemicalpotentialinflotation[J].MineralsEngineering,2017,109:135−143.[15]NOOSHABADIAJ,LARSSONA,KOTAHR.Formationofhydrogenperoxidebypyriteanditsinfluenceonflotation[J].AdvancedPowderTechnology,2014,25(3):832−839.[16]NOOSHABADIAJ,RAOKH.Complexsulphideoreflotation:EffectofdepressantsadditionduringgrindingonH2O2formationanditsinfluenceonflotation[J].InternationalJournalofMineralProcessing,2016,157:89−97.[17]GUANChang-ping,YINZhi-gang,KHOSOSA,SUNWei,HUYue-hua.Performanceanalysisofthiocarbonohydrazideasanovelselectivedepressantforchalcopyriteinmolybdenite−chalcopyriteseparation[J].Minerals,2018,8(4):142.[18]YINWan-zhong,XUEJi-wei,LIDong,SUNQian-yu,YAOJin,HUANGShi.Flotationofheavilyoxidizedpyriteinthepresenceoffinedigeniteparticles[J].MineralsEngineering,2018,115:142−149.[19]SARVARAMINIA,LARACHIF,HARTB.Ethylxanthatecollectorinteractionwithprecipitatedironandcopperhydroxides–ExperimentsandDFTsimulations[J].ComputationalMaterialsScience,2016,120:108−116.[20]MIKHLINY,VOROBYEVS,SAIKOVAS,TOMASHEVICHY,FETISOVAO,KOZLOVAS,ZHARKOVS.Preparationandcharacterizationofcolloidalcopperxanthatenanoparticles[J].NewJournalofChemistry,2016,40(4):3059−3065.[21]MINXiao-bo,LIYANGwen-jun,KEYong,SHIMei-qing,CHAILi-yuan,KEXue.Fe−FeS2adsorbentpreparedwithironpowderandpyritebyfacileballmillinganditsapplicationforarsenicremoval[J].WaterScience&Technology,2017,76(1):192−200.[22]XIANYong-jun,WANGYi-jie,WENShu-ming,NIEQi,DENGJiu-shuai.Floatabilityandoxidationofpyritewithdifferentspatialsymmetry[J].MineralsEngineering,2015,72:94−100.[23]CHIRITAP,DESCOSTESM,SCHLEGELML.OxidationofFeSbyoxygen-bearingacidicsolutions[J].JColloidInterfaceSci,2008,321(1):84−95.[24]PARKK,CHOIJ,GOMEZ-FLORESA.Flotationbehaviorofarsenopyriteandpyrite,andtheirselectiveseparation[J].MaterialsTransactions,2015,56(3):435−440.[25]SCHOONENMAA,HARRINGTONAD,LAFFERSR,STRONGINDR.Roleofhydrogenperoxideandhydroxylradicalinpyriteoxidationbymolecularoxygen[J].GeochimicaetCosmochimicaActa,2010,74(17):4971−4987.[26]PENGHui-qing,WUDi,ABDELMONEMM.Flotationperformancesandsurfacepropertiesofchalcopyritewithxanthatecollectoraddedbeforeandaftergrinding[J].ResultsinPhysics,2017,7:3567−3573.[27]HUAXiao-ming,ZHENGYong-fei,XUQian,LUXiong-gang,CHENGHong-wei,ZOUXing-li,SONGQiu-shi,NINGZhi-qiang,2614SultanAhmedKHOSO,etal/Trans.NonferrousMet.Soc.China29(2019)2604−2614FREEML.Leachingmechanismandelectrochemicaloxidationonthesurfaceofchalcopyriteinammonia−ammoniumchloridesolution[J].JournaloftheElectrochemicalSociety,2018,165(10):[31]PENGHui-qing,WUDi,ABDELMONEMM.Flotationperformancesandsurfacepropertiesofchalcopyritewithxanthatecollectoraddedbeforeandaftergrinding[J].ResultsinPhysics,2017,7:3567−3573.CHENJian-hua,LANLi-hong.Depressioneffectofpseudoglycolythioureaacidinflotationseparationofcopper−molybdenum[J].TransactionsofNonferrousMetalsSocietyofChina,2013,23(3):824−831.PLESSISRD,MILLERJD.Preliminaryexaminationofelectrochemicalandspectroscopicfeaturesoftrithiocarbonatecollectorsforsulfidemineralflotation[J].TransactionsofNonferrousMetalsSocietyofChina,2000,10(1):12−18.LINQing-quan,GUGuo-hua,WANGHui,LIUYou-cai,WANGChong-qing,FUJian-gang,ZHAOJun-yao,HUANGLuo-luo.Recoveryofmolybdenumandcopperfromporphyryoreviaiso-floatabilityflotation[J].TransactionsofNonferrousMetalsSocietyofChina,2017,27(10):2260−2271.[28][29][30]E466−E476.ZHANGBo,YANGuang-hui,ZHAOYue-min,ZHOUChen-yang,LUYao.Coalpyritemicrowavemagneticstrengtheningandelectromagneticresponseinmagneticseparationdesulfurizationprocess[J].InternationalJournalofMineralProcessing,2017,168:136−142.YUNIATIMD,HIRAJIMAT,MIKIH,SASAKIK.Silicatecoveringlayeronpyritesurfaceinthepresenceofsilicon–catecholcomplexforacidminedrainageprevention[J].MaterialsTransactions,2015,56:1733−1741.OWUSUC,FORNASIEROD,ADDAI-MENSAHJ,ZANINM.Influenceofpulpaerationontheflotationofchalcopyritewithxanthateinchalcopyrite/pyritemixtures[J].InternationalJournalofMineralProcessing,2015,134:50−57.[32][33][34]H2O2处理后的黄铜矿和黄铁矿对黄药的吸附作用及其浮选分离SultanAhmedKHOSO1,2,胡岳华1,2,吕斐1,2,高雅1,2,刘润清1,2,孙伟1,2

1.中南大学资源加工与生物工程学院,长沙410083;2.中南大学战略含钙矿物资源清洁高效利用湖南省重点实验室,长沙410083摘要:通过一系列浮选试验和矿物表面分析技术研究H2O2处理对黄药浮选分离黄铜矿与黄铁矿的影响。浮选试验结果表明,H2O2对两种矿物的浮选行为具有一定影响,H2O2对黄铁矿的抑制效果强于黄铜矿。在一定H2O2浓度条件下,黄铜矿在pH9.0时可从黄铁矿中选择性分离出来,此时黄铜矿的回收率达84%以上,而黄铁矿回收率低于24%。Zeta电位、紫外−可见分光光谱以及红外光谱等分析结果表明,H2O2处理后的两种矿物对捕收剂的吸附量不同,黄铜矿表面对黄药的吸附量远远大于黄铁矿表面对黄药的吸附量。红外光谱和XPS分析结果表明,H2O2处理可大幅度提高黄铁矿表面的亲水性,从而抑制捕收剂的吸附,使其可浮性下降;而黄铜矿对H2O2不产生吸附,因此对黄药的吸附和对二黄原酸的氧化效果较好,黄铜矿的浮选回收率较高。关键词:H2O2处理;选择性分离;黄药吸附;黄铜矿;黄铁矿(EditedbyWei-pingCHEN)

因篇幅问题不能全部显示,请点此查看更多更全内容