JAmOilChemSoc(2009)86:573–580DOI10.1007/s11746-009-1375-6
ORIGINALPAPER
Synthesis,CharacterizationandPerformanceofAmineModifiedLinseedOilFattyAmideCoatings
ManawwerAlamÆAlokR.RayÆS.M.AshrafÆSharifAhmad
Received:10August2008/Revised:19March2009/Accepted:20March2009/Publishedonline:18April2009ÓAOCS2009
AbstractAnovelattempthasbeenmadetodevelopambientcuredpolyamineamide(PAA)resinsbythecon-densationpolymerizationreactionofoilfattyamidediol(N,N-bis2-hydroxyethyllinseedoilfattyamide)(HELA)ando-phenylenediamine,whichwasfurthermodifiedbypoly(styrene-co-maleicanhydride)(SMA)atdifferentphr(partsperhundredpartofresin)togetaseriesofPAA–SMAresins.ThestructuralelucidationofHELA,PAAandPAA–SMAwerecarriedoutbyFT-IR,1H-NMRand13C-NMRspectroscopictechniques.Thephysico-chemicalandphysico-mechanicalanalyseswerecarriedoutbystandardlaboratorymethods.Thermalanalysesoftheseresinswereaccomplishedbythermogravimetricanalyses(TGA)anddifferentialscan-ningcalorimetry(DSC)techniques.CoatingsofPAA–SMAwerepreparedonmildsteelstripstoevaluatetheirphysico-mechanicalandchemical/corrosionresistanceperformanceundervariouscorrosiveenvironments.ItwasfoundthatamongthePAA–SMAsystems,PAA-35showedthebestphysico-mechanicalandcorrosionresistanceperformance.Thermalstudiesrevealthatthecoatingscanbesafelyusedupto305°C.
KeywordsLinseedoilÁo-phenylenediamineÁPoly(styrene-co-maleicanhydride)ÁCoatings
Introduction
Thecurrentinterestinthedevelopmentofusefulbiode-gradablepolymericmaterialshasencouragedscientistsandindustrialiststousereadilyavailablerenewable,inexpen-siverawmaterialssuchascarbohydrate,lignin,starch,gums,chitosanandvegetableoils.Outofthesevegetableoilslinseed,soybean,castor,safflower,coconut,andargemonearemajorsustainablerawmaterials[1–3].
Vegetableoilisbeingincreasinglyusedasasourceofmonomersforsustainableresourcebasedpolymers[2].N,N-bis(2-hydroxyethyl)vegetableoilfattyamidesareexcellentexampletothisend.Theyareobtainedbybase-catalyzedaminolysisofvariousoilsviz.linseed,soybean,castorandothers.Theyhavebeenmodifiedbydifferentmoietiesviz.phthalicacid,tartaricacid,maleicacidandbisphenol-A.Consequently,anumberofpolymershavebeenobtainedfromvegetableoilssuchasalkyds,polyep-oxies,polyethers,polyesters,polyurethanes,polyestera-mides,polyetheramides,andothers[4–6].Dependinguponthenatureoftheiruse,thesepolymerscanbefurthermodified.Organiccoatingsderivedfromvegetableoilspossessgoodphysico-mechanicalandcorrosionprotectionproperties,foremostamongthembeinggloss,flexibility,impactandresistanceagainstseveralcorrosivechemicals.Incomparison,petrochemicalbasedpolymericcoatingspossesslowshrinkageenergyandareusuallybrittle[7,8].Themajordrawbackofthevegetableoilbasedpolymericcoatingsistheirneedtobecuredathightemperaturesand,insomecases,theirlowresistancetoalkalis[9].Toover-cometheseshortcomings,suitablechemicalmodifications
M.AlamÁA.R.Ray
CentreforBiomedicalEngineering,IndianInstituteofTechnologyDelhi,HauzKhas,NewDelhi110016,IndiaM.Alam
e-mail:malamiitd@gmail.com
A.R.Ray
BiomedicalEngineeringUnit,AllIndiaInstituteofMedicalSciences,NewDelhi110029,India
S.M.AshrafÁS.Ahmad(&)
MaterialsResearchLaboratory,DepartmentofChemistry,JamiaMilliaIslamia,NewDelhi110025,Indiae-mail:sharifahmad_jmi@yahoo.co.in
123
www.51zhgao.com
574
JAmOilChemSoc(2009)86:573–580
ofoilderivedpolymersandtheappropriatecuringagentsareutilizedtoobtainambientcuredoilderivedpolymericcoatings.
N,N-bis2-hydroxyethyloilfattyamidediolobtainedfromvegetableoilhasbeenwidelyusedtoobtainpoly-etheramides,polyesteramidesandpolyurethanes[2,5,6,10],whichhavebeeninvestigatedfortheircoatingprop-erties.Theunsaturationinitsfattyamidechaincanfurtherbeexploitedtoobtainnewpolymersforcoatingapplica-tions.Inallthesecasescuringofcoatingsoccursataround200°C.Thisstepisenergyconsuming,soattemptsbeenmadetoobtainambientcuredcoatingspossessinghighperformance[2].
Aromaticamineshaveshowngoodcorrosioninhibitiononmildsteel.Aromaticaminesuchasp-phenylenediamine,3,4-diaminophenylether,o-phenylenediamine,anilineandtheirpolymersarewidelyusedinconductingpolymersyn-thesisandalsoascuringagentsforepoxies,naturalrubber,unsaturatedpolyesterandothers[11–13].Aminegroupshaveastrongaffinityforsurfaceironandcanprotectthelatteragainstcorrosion.Thiscanbeattributedtotheabun-danceofpielectronsandunsharedelectronsonthenitrogenatomthatcaninteractwithiron’sd-orbitaltoformcoordi-natebonds.Itsuggeststhataminopolymersareadsorbedonmetalsurfacethroughtheiminemoietyofpolymerchains.Linseedoilisanimportantvegetableoil.ItsmajorproducersareArgentina,Canada,China,USandIndia.Theannualproductionofthisoilwasreportedas2.6mil-liontonsworldwideand0.20milliontonsinIndiaintheyear2002–2003[14,15].ThepaintandalliedindustriesaremajorconsumersoflinseedoilinIndiaaccountingfor70%ofthetotalconsumption.Aliteraturesurveyhasrevealedthatthemodificationoflinseedoilfattyamidediolbyo-phenylenediamineandfurtherwithpoly(styrene-co-maleicanhydride)hasnotbeenundertaken.Wenowreportthesynthesisofaminemodifiedfattyamidediol.TheproposedreactionschemesforthesynthesisandcuringoftheresinswereconfirmedbyFT-IR,1H-NMRand13C-NMRspectroscopictechniques.ThermalstudieswerecarriedoutbyTGAandDSCtechniques.Thephysico-
mechanicalandchemicalresistancepropertiesofcoatingswerestudiedbystandardmethods.
ExperimentalProceduresMaterials
Linseed(LinumusitatissimumL.,Iodinevalue=181,dryingindex=102)wasfinelypowderedinaseedgrinder.OilwasextractedfromitinaSoxhletapparatusbyrefluxinginpetroleumether.Oilwasseparatedfromthesolventinarotaryevaporatorandwassuitablypurified.ThefattyacidcompositionoftheoilwasdeterminedusingitsmethylesteronaHewlett-Packard5890SeriesIIgasliquidchroma-tographywithFIDdetector.Theinjectiontemperaturewas250°C;nitrogenwasusedasthecarriergasataflowrateof20mL/min.Thefattyacidcompositionwasobservedasoleicacid22%,linoleicacid14%,linolenicacid44%pal-miticacid5%stearicacid4%.Xylene,sodiummethoxide,diethanolamine(Merck,India),o-phenylenediamine(LobaChemie,India),poly(styrene-co-maleicanhydride),averagemolecularwt.1,600Da(AldrichChemicalCompany,USA),ethyleneglycolmonomethylether(Qualigens,India)wereusedasreceived.Characterization
Thephysico-chemicalpropertiessuchasiodinevalue,hydroxylvalue,acidvalue,saponificationvalue,specificgravityandrefractiveindexweredeterminedbystandardlaboratorymethods(Table1).TheinherentviscosityofPAAandPAA–SMAinethyleneglycolmonomethylether(EGME),0.5g/100ml,wasdeterminedbyanUbblehodeviscometerat25°C.Thesolubilityoftheresinwasalsotestedinvariousorganicsolventsnamely,dimethylsulf-oxide,ethyleneglycolmonomethylether,tetrahydrofuran,ethanol,methanol,ethylmethylketone,xylene,toluene,benzene,chloroform,1-4dioxane,acetone,carbontetrachloride,N,N-dimethylformamide,heptane,diethylether.
Table1Physico-chemicalcharacterizationofPAAandPAA–SMAresinsResincode*PAAPAA-20PAA-25PAA-30PAA-35PAA-40
Iodinevalue855450484747
Acidvalue–1.772.503.004.504.70
Hyd.value18.0714.8413.8812.0011.0710.01
Ref.index1.51501.45901.46531.50821.49801.4943
Inh.viscosity0.60050.61650.62690.64550.66580.6700
Sap.value–7578798589
Specificgravity0.97020.98200.98530.98710.98880.9891
DTT(min)–3025151010
*LasttwodigitsindicatethephrofSMA
Hydhydroxyl,Inhinherent,Sapsaponification,DTTdrytotouchtime
123
www.51zhgao.com
JAmOilChemSoc(2009)86:573–580
575
FT-IRspectraoftheseresinsweretakenonPerkinElmer1750FT-IRspectrophotometer(PerkinElmerCetusInstrument,Norwalk,CT,USA)usingNaClcell.1H-NMRand13C-NMRspectrawererecordedonaBrukerSpec-trospinDPX300MHzusingdeuteratedchloroform(CDCl3)assolventandTMSasaninternalstandard.ThermalanalysisofPAA–SMAwascarriedoutbyTGA51(TAInstrument,USA)andthecuringbehaviorwasstudiedbyDSC(DSC10,TAInstrument,USA)inanitrogenatmosphereattheheatingrateof20°C/min.SynthesisofN,N-Bis(2-hydroxyethyl)LinseedFattyAmide(HELA)(Scheme1)
HELAwaspreparedaccordingtopreviouslyreportedmethod[4].SpectralAnalysis
FT-IR,cm-1:3370(OHattachedtoCH2);2853(CH2symmetrical);2928(CH2asymmetrical);3010(–CH=CHunsaturation);1620(C=Oamide).1H-NMR,CDCl3,d,ppm:1.30–1.25(m,–CH2–8H);5.30(q,–CH=CH,–6H);3.52(t,–CH2OH,4H);5.18(s,CH2OH,2H);0.87–0.99(t,–CH3,3H)(Fig.1a).13C-NMR,CDCl3,d,ppm:175(C=O,amide);32–22(CH2fattyamidechain);14(CH3fattyamidechain);60(–CH2OH);130–127(–CH=CH–)Fig.2a).SynthesisofPoly(Amine–Amide)(PAA)(Scheme2)HELA(0.02mol)ando-phenylenediamine(0.02mol)weredissolvedinxylene(50ml)andwereplacedinafour-neckedround-bottomflaskfittedwithaDeanStarkTrap,anitrogeninlettube,athermometerandamechanicalstirrer.Thereactionmixturewasheatedat150±5°CandrefluxeduntilthecalculatedamountofwaterwascollectedintheDeanStarkTrap.Theprogressofthereactionwasmonitoredbythinlayerchromatography(TLC)andbythedeterminationofthehydroxylvalueatregularintervals.Afterthecompletionofthereaction,xylenewasremovedfromtheproductunderreducedpressuretoobtainPAA.Thelatterwaspurifiedbyrepeatedlywashingwithdistilledwatertilltheunreactedcompoundswerecompletelyremoved.Itwasfurtherwashedwithmethylalcoholanddriedinvacuumovenat60°C.
SpectralAnalysis
FT-IR,cm-1:3390(OHattachedtoCH2,NHattachedamine);2854(CH2symmetrical);2927(CH2,asymmetri-cal);3011(–CH=CH,unsaturation);1654(C=O,amide);1508,762(aromatic).1H-NMR,CDCl3,d,ppm:3.53–3.50(NH2);3.56–3.55(NH);2.3–2.6(–CH2amide);7.5–6.71(aromatic);3.50–3.48(CH2–NH);0.83(–CH3fattyamidechain)(Fig.1b).13C-NMR,CDCl3,d,ppm:175(C=O,amide);22.1–29.1(CH2fattyamidechain);13.8(CH3);38(–CH2–N);144.6(aromaticcarbonattachedtoNH2)(Fig.2b).
SynthesisofPAA–SMA(Scheme3)
10.00gPAAwasdissolvedin20mlxylene;10mlof2.0,2.5,3.0,3.5and4.0%w/vsolutionofSMAinethyleneglycolmonomethyletherwasmixedseparatelywithpre-vioussolutiontoobtain20–40phrloadingofSMAinafour-neckedround-bottomflaskfittedwithacondenser,anitrogeninlettube,athermometerandamagneticstirrer.Thereactionwascarriedoutunderstirringat150°C.TheprogressofthereactionwasmonitoredbytheacidvalueandTLC.IneachcasewefoundthatSMAhadfullyreacted.Thesolventwasremovedfromtheresininarotaryvacuumevaporator.SpectralAnalysis
FT-IR,cm-1:3368(OH,NH);1654(C=Oamide);2854(CH2symmetrical);2927(CH2asymmetrical);3011(–CH=CHunsaturation);1508,762(aromatic);702(sty-rene).1H-NMR,CDCl3,d,ppm:3.53–3.50(NH2);3.56–3.55(NH);2.3–2.6(–CH2amide);7.5–6.71(aromatic),3.50–3.48(CH2–NH)0.83(–CH3fattyamidechain);2.1(CH-styrene);CH2-Styrene)(Fig.1c).13C-NMR,CDCl3,d,ppm:175(C=O,amide);22.1–29.1(CH2fattyamidechain);13.8(CH3fattyamidechain);38(–CH2–N);144.6(aromaticcarbonattachedtoNH2);40–58(CH2,CHofStyrene)(Fig.2c).
ThepresenceofabovementionedcharacteristicpeaksinFT-IR,1H-NMRand13C-NMR(Figs.1,2)confirmstheformationofHELA,PAAresinandcuringreactionbetweenPAAandSMA.
123
576
Fig.11H-NMR,aHELA,bPAA,cPAA–SMA123
JAmOilChemSoc(2009)86:573–580
a cabbcHO-H2C-H2CCH2-CH2-OHNC=OCH2-CH2-(CH2)4-CH2-CH=CH-CH2-(CH=CH-CH2)-CH3defghijhikl b nopbcmHHHO-2HC-2HCCH2-CH2-NNHaNnC=OCHd2-CHe2-(CH2)4-CH2-CH=CH-CH2-(CH=CH-CH2)fghijhi2-CH3kl c CHrnCH2spabcmHoHqOCH-CH-HHO-2HC-2HCCH2-CH2-NNCqNCN-HNC=OOmR JAmOilChemSoc(2009)86:573–580Fig.213C-NMR,aHELA,bPAA,cPAA–SMA
577
123
578JAmOilChemSoc(2009)86:573–580
3091091mmsizesforchemicalresistanceandon7092591mmsizestodeterminethespecularglossat45°byGlossmeterRSPT20,(DigitalInstruments,SantaBarbara).Physico-mechanicalproperties,viz.scratchhardness(BS3900),impactresistance(IS:101part5/s3,1988)andbendtest(ASTM-D3281-84)ofthecoatingsweredeterminedbyrespectivestandardmethodsindicatedintheparentheses.Thedrytotouch(DTT)anddrytohard(DTH)timeshavealsobeennoted.ThethicknessofthesecoatingsweredeterminedbyElcometermodel345(ElcometerInstruments,Manchester,UK)andwerefoundtobe85–90lm.Corrosiontestswereperformedinacid(5wt.%HCl),alkali(2and5wt.%NaOH)waterandxylenebyplacingthemin3-in.diameterporcelaindishesintheaforementionedmedia.Theacceleratedcorrosiontestwasalsocarriedoutbysaltspraytestinasaltmistchambercontaining3.5wt.%NaCl(ASTMD1654).Periodicvisualexaminationwasconducteduntilthefilmshowedevidenceofsofteningordeterioration(Table2).
ResultsandDiscussion
Scheme1showslinseedoilwasconvertedtoHELAbyaminolysis.PAAwassynthesizedbythecondensationpolymerizationreactionbetweenHELAando-phenylenediamineinanequimolarratioat150°C.Inthisreaction,OHgroupofHELAreactswithNH2ofo-phenylenedia-mine(Scheme2).PAAisfurthermixedwithPoly(styrene-co-maleicanhydride)indifferent(20–40)phr(Scheme3)toobtainaseriesofPAA–SMAresins.ThestructuresofHELA,PAAandthecuringreactionofPAAwithSMAwereascertainedwiththehelpofFT-IR,1H-NMRand13C-NMRspectralanalyses.
PreparationandTestingofCoatings
ThePAA–SMAresin(40wt.%)solutionwasappliedbybrushoncommerciallyavailablemildsteelstripsof
Physico-ChemicalCharacterization
Table1revealsinformationaboutthechangeiniodine,saponification,refractiveindex,inherentviscosityand
Table2Physico-mechanicalandchemicalresistanceperformanceofPAA–SMAsystemsResincode*
Scratch
hardness(Kg)
Impactresistance(lb/in.)
Bendtest(1/8in.)
Gloss(45°)
CorrosionresistancetestNaOH(2wt.%)(12h)
PAA-25PAA-30PAA-35PAA-40
1.52.53.02.5
250250250250
PassesPassesPassesPasses
70809093
eecc
(5wt.%)(2h)eecc
HCl(5wt.%)(5days)ddcc
NaCl(3.5wt.%)(8days)bbaa
H2O(7days)
Xylene(5days)
decc
eedd
*ThelasttwodigitsindicatethephrofSMA
(a)Lossingloss,(b)slightlossinglossandfilmswell,(c)unaffected,(d)filmslightlyswell,(e)filmcompletelyremoved
123
JAmOilChemSoc(2009)86:573–580specificgravityvaluesofPAAandPAA–SMAofdifferentcompositions.PMA–SMAresinwasdissolvedinxylenetofindouttheabovephysico-chemicalcharacteristics.TheOHvalueduringtheprogressofthereaction(Scheme2)wasfollowedbyquantitativelydeterminingitsvaluebythestandardmethod(ASTMD1957-86)inTable1.ItwasobservedthattheOHvaluedecreasedasthereactionprogressed.ThisshowsthatPAAhadreactedwithSMA.Asaresultofthereactionthemolarmassoftheresin,PAA–SMAwillincreaseinproportiontothephrofSMA,whichwillalsocontributetotheiodinevalue,refractiveindexandspecificgravityofthesame.
PAA–SMAresinwasalsosubjectedtosolubilitytestsinvariousorganicsolventsatroomtemperature.PAA–SMAwerecompletelysolubleindimethylsulfoxide,ethyleneglycolmonomethylether,tetrahydrofuran,ethanol,metha-nol,ethylmethylketone,xylene,toluene,benzene,chloro-form,1-4dioxane,acetone,carbontetrachlorideandN,N-dimethylformamide;itwasinsolubleinheptaneandpartiallysolubleindiethylether.Thesolubilitybehaviorsuggeststhattheresincontainsexcessivepolargroups.CoatingProperties
Thephysico-mechanicalandchemicalresistanceperfor-manceofPAA–SMA(20–40phr)aregiveninTable2.Thedrytotouch(DTT)timewasfoundtodecreaseuptoPAA-35.Beyondthiscomposition,DTTofresinswasfoundtobeconstant(10min).Thevaluefordrytohard(DTH)time,whichiscorrelatedtothecompletecuringofalltheseresins,wasfoundtobe10–12days.ScratchhardnessvalueswerefoundtoincreaseuptoPAA-35afterthatdecreaseinscratchhardnessvalueswasobserved.Itshowsthattheoptimumextentofcross-linkingofcoatingsisachievedatPAA-35.Allthesecoatingspassthe250lb/in.impacttestwhichshowsgoodadhesionofcoatingstothesubstrateduetotheincreasenumberofpolargroupsinthePAA–SMAsystem.Itwasobservedthatthesecoatingsshowgoodbendtestvalues(1/8in.)indicatinggoodflex-ibilityduetothepresenceofdanglingalkylchain.TheincreasednumbersofpolargroupsinPAA–SMAcoatingsimpartgoodadhesionbetweenthecoatingsandmetalsurface;thiswillcauseanincreaseinimpactresistanceashasbeenobserved.
ItwasfurtherobservedthattheglossvaluesincreasedwithanincreaseinSMAcontent.Weconsidertheglossisafunctionofsurfacesmoothnessbutotherfactorslikethenatureofmoleculeinthefilmandthemolecularstructurealsocontributetothegloss.Inourcase,weattributetheenhancementoftheglosstothemolecularstructureandfavorablenetworkformation.Asthemethodofpreparationofthefilminallcasesisthesame,hencethesurfacesmoothnesswouldalsobethesame;theenhancementin
579
thegloss,therefore,isattributedtothedensemolecularnetworkformation.
Table2revealsthatPAA-35andPAA-40amongallPAAcoatingsystems,exhibitedbestchemicalresistancepropertiesinmineralacid,salineandaqueousenvironmentandalsoinanalkalineenvironment.Thecoatingsoftheaforementionedresinswerefoundtopossessmuchhigheralkaliresistancepropertiesthanotherreportedpolyestera-midecoatings[5].Surprisingly,PAA–SMAsystemsfailtogivesatisfactoryperformanceinxylene;PAA-35andPAA-40werefoundtoswellin5dayswhilePAA-20andPAA-25werecompletelyremovedinthisperiod,pre-sumablybecauseofthepresenceofSMAmoietiesinthemodifiedSMA.ThermalAnalysis
TheTGAthermogram(Fig.3)ofPAA-35showsa5wt.%lossoftheresinat240°Cwhichcanbecorrelatedtotheevaporationoftheentrappedsolvent10wt.%lossisobservedat305°C,buttheinitialdecompositiontemper-atureappearstocorrespondto325°C.Theresinshows50wt.%lossat415°Cwhileitdecomposescompletelyat525°C.
Thepeakat35°CisspuriousandhasnosignificanceintheDSCthermogram.Figure4showsanendothermicpeakwhichextendsfrom90to150°CforPAA-30andPAA-35,respectively.ThepeaksforPAA-30andPAA-35are,respectively,centeredat120and125°C.IntheTGAthermogram,noweightlossisobservedattheaforemen-tionedtemperatures.Theendothermsare,therefore,con-sideredtorepresentthemeltingoftheresins.AsmallincreaseisobservedinmeltingpointswiththeincreaseintheloadingofSMA.ThehigherSMAcontentwithalargeramountofaromaticmoietyappearstocontributetotheincreaseinthemeltingpointoftheseresins.Beyond150°C,anexothermensueswhichextendsovertherestoftheDSCtrace.Thethermogramsshowtheonsetof
123
580decompositionat325°CwhichisalsoobservedinthecaseofTGA.
Conclusion
ThesynthesisofPAA–SMAresinfromlinseedoilprovidesanewwaytoutilizeasustainableresourcebasedrawmaterial.PAA–SMAresinshowsgoodalkaliresistanceascomparedtoreportedpolyesteramidecoatings[5].Thesystemhasagoodcombinationofpropertiesofamine,ester,styreneandamidelinkagesintermsofphysico-mechanicalproperties.TGAthermogramsrevealthatPAA-35showsthebestperformanceandcanbesafelyusedupto305°C.
AcknowledgmentsDr.ManawwerAlamgratefullyacknowledgesfinancialsupportbytheCouncilofScientificandIndustrialResearch(CSIR),NewDelhi,IndiaforResearchAssociateagainstGrantNo.9/86/0859/08EMR-I.
123
JAmOilChemSoc(2009)86:573–580
References
1.ErenT,KusefogluSH,WoolR(2003)Polymerizationofmaleicanhydride-modifiedplantoilswithpolyols.JApplPolymSci90:197–202
2.AhmadS,AshrafSM,SharminE,AlamM(2005)Ambientcuredtartaricacidmodifiedfattyamidebasedanticorrosivecoatings.JMacromolSci(PAC)42:751–764
3.HungJ,LiK(2008)Anewsoyflour-basedadhesiveformakingInteriortypeIIplywood.JAmOilChemSoc85:63–70
4.AlamM,SharminE,AshrafSM,AhmadS(2004)Newlydevelopedurethanemodifiedpolyetheramidebasedanticorrosivecoatingsfromasustainableresource.ProgOrgCoat50:224–2305.AhmadS,NaqviF,VermaKL,YadavS(1999)Studiesonanewlydevelopedlinseedoil-basedalumina-filledpolyesteramideanticorrosivecoating.JApplPolymSci72:1679–1687
6.AhmadS,AshrafSM,SharminE,NazirM,AlamM(2005)Studiesonnewpolyetheramide-butylatedmelamineformalde-hydebasedanticorrosivecoatingsfromasustainableresource.ProgOrgCoat52:85–91
7.AhmadS,AshrafSM,ZafarF(2007)Developmentoflinseedoilbasedpolyesteramidewithoutorganicsolventatlowertempera-ture.JApplPolymSci104:1143–1148
8.HomrighausenCL,KellerTM(2002)Synthesisandcharacter-izationofasilarylene–siloxane–diacetylenepolymeranditcon-versiontoathermosettingplastic.Polymer43:2619–2623
9.RoyTK,MannariVM,RavalDA(1997)Synthesisandappli-cationsofoilmodifiedpolyesteramideresinsforsurfacecoating.JSciIndResMarch56:159–163
10.MosiewickiM,ArangurenMI,BorrajoJ(2005)Mechanical
propertiesoflinseedoilmonoglyceridemaleate/styrenecopoly-mers.JApplPolymSci97:825–836
11.HsiaoSH,YangCP,ChenCW,LiouGS(2004)Synthesisand
propertiesofnovelpoly(amide-imide)scontainingpendentdiphenylaminogroups.EurPolymJ41:511–517
12.VreugdenhilAJ,WoodsME(2005)Triggeredreleaseof
molecularadditivesfromepoxy-aminesol–gelcoatings.ProgOrgCoat53:119–125
13.AtaeiSM(2005)Soluble,thermallystablepoly(esteramide)s
derivedfromterphthalicacidbis(carboxydiphenylmethyl)esteranddifferentdiamines.EurPolymJ41:65–71
14.BarnwalBK,SharmaMP(2005)Prospectsofbiodieselproduc-tionfromvegetableoilsinIndia.RenewableSustainableEnergyRev9:363–378
15.ScrimgeomurC(2005)Chapter1.In:ShahidiF(ed)Bailey’s
industrialoilandfatproducts,6volumeset,6thedn.Wiley,NewYork
因篇幅问题不能全部显示,请点此查看更多更全内容