您的当前位置:首页正文

Synthesis, Characterization and Performance of Amine Modified

2024-01-28 来源:汇智旅游网
www.51zhgao.com

JAmOilChemSoc(2009)86:573–580DOI10.1007/s11746-009-1375-6

ORIGINALPAPER

Synthesis,CharacterizationandPerformanceofAmineModifiedLinseedOilFattyAmideCoatings

ManawwerAlamÆAlokR.RayÆS.M.AshrafÆSharifAhmad

Received:10August2008/Revised:19March2009/Accepted:20March2009/Publishedonline:18April2009ÓAOCS2009

AbstractAnovelattempthasbeenmadetodevelopambientcuredpolyamineamide(PAA)resinsbythecon-densationpolymerizationreactionofoilfattyamidediol(N,N-bis2-hydroxyethyllinseedoilfattyamide)(HELA)ando-phenylenediamine,whichwasfurthermodifiedbypoly(styrene-co-maleicanhydride)(SMA)atdifferentphr(partsperhundredpartofresin)togetaseriesofPAA–SMAresins.ThestructuralelucidationofHELA,PAAandPAA–SMAwerecarriedoutbyFT-IR,1H-NMRand13C-NMRspectroscopictechniques.Thephysico-chemicalandphysico-mechanicalanalyseswerecarriedoutbystandardlaboratorymethods.Thermalanalysesoftheseresinswereaccomplishedbythermogravimetricanalyses(TGA)anddifferentialscan-ningcalorimetry(DSC)techniques.CoatingsofPAA–SMAwerepreparedonmildsteelstripstoevaluatetheirphysico-mechanicalandchemical/corrosionresistanceperformanceundervariouscorrosiveenvironments.ItwasfoundthatamongthePAA–SMAsystems,PAA-35showedthebestphysico-mechanicalandcorrosionresistanceperformance.Thermalstudiesrevealthatthecoatingscanbesafelyusedupto305°C.

KeywordsLinseedoilÁo-phenylenediamineÁPoly(styrene-co-maleicanhydride)ÁCoatings

Introduction

Thecurrentinterestinthedevelopmentofusefulbiode-gradablepolymericmaterialshasencouragedscientistsandindustrialiststousereadilyavailablerenewable,inexpen-siverawmaterialssuchascarbohydrate,lignin,starch,gums,chitosanandvegetableoils.Outofthesevegetableoilslinseed,soybean,castor,safflower,coconut,andargemonearemajorsustainablerawmaterials[1–3].

Vegetableoilisbeingincreasinglyusedasasourceofmonomersforsustainableresourcebasedpolymers[2].N,N-bis(2-hydroxyethyl)vegetableoilfattyamidesareexcellentexampletothisend.Theyareobtainedbybase-catalyzedaminolysisofvariousoilsviz.linseed,soybean,castorandothers.Theyhavebeenmodifiedbydifferentmoietiesviz.phthalicacid,tartaricacid,maleicacidandbisphenol-A.Consequently,anumberofpolymershavebeenobtainedfromvegetableoilssuchasalkyds,polyep-oxies,polyethers,polyesters,polyurethanes,polyestera-mides,polyetheramides,andothers[4–6].Dependinguponthenatureoftheiruse,thesepolymerscanbefurthermodified.Organiccoatingsderivedfromvegetableoilspossessgoodphysico-mechanicalandcorrosionprotectionproperties,foremostamongthembeinggloss,flexibility,impactandresistanceagainstseveralcorrosivechemicals.Incomparison,petrochemicalbasedpolymericcoatingspossesslowshrinkageenergyandareusuallybrittle[7,8].Themajordrawbackofthevegetableoilbasedpolymericcoatingsistheirneedtobecuredathightemperaturesand,insomecases,theirlowresistancetoalkalis[9].Toover-cometheseshortcomings,suitablechemicalmodifications

M.AlamÁA.R.Ray

CentreforBiomedicalEngineering,IndianInstituteofTechnologyDelhi,HauzKhas,NewDelhi110016,IndiaM.Alam

e-mail:malamiitd@gmail.com

A.R.Ray

BiomedicalEngineeringUnit,AllIndiaInstituteofMedicalSciences,NewDelhi110029,India

S.M.AshrafÁS.Ahmad(&)

MaterialsResearchLaboratory,DepartmentofChemistry,JamiaMilliaIslamia,NewDelhi110025,Indiae-mail:sharifahmad_jmi@yahoo.co.in

123

www.51zhgao.com

574

JAmOilChemSoc(2009)86:573–580

ofoilderivedpolymersandtheappropriatecuringagentsareutilizedtoobtainambientcuredoilderivedpolymericcoatings.

N,N-bis2-hydroxyethyloilfattyamidediolobtainedfromvegetableoilhasbeenwidelyusedtoobtainpoly-etheramides,polyesteramidesandpolyurethanes[2,5,6,10],whichhavebeeninvestigatedfortheircoatingprop-erties.Theunsaturationinitsfattyamidechaincanfurtherbeexploitedtoobtainnewpolymersforcoatingapplica-tions.Inallthesecasescuringofcoatingsoccursataround200°C.Thisstepisenergyconsuming,soattemptsbeenmadetoobtainambientcuredcoatingspossessinghighperformance[2].

Aromaticamineshaveshowngoodcorrosioninhibitiononmildsteel.Aromaticaminesuchasp-phenylenediamine,3,4-diaminophenylether,o-phenylenediamine,anilineandtheirpolymersarewidelyusedinconductingpolymersyn-thesisandalsoascuringagentsforepoxies,naturalrubber,unsaturatedpolyesterandothers[11–13].Aminegroupshaveastrongaffinityforsurfaceironandcanprotectthelatteragainstcorrosion.Thiscanbeattributedtotheabun-danceofpielectronsandunsharedelectronsonthenitrogenatomthatcaninteractwithiron’sd-orbitaltoformcoordi-natebonds.Itsuggeststhataminopolymersareadsorbedonmetalsurfacethroughtheiminemoietyofpolymerchains.Linseedoilisanimportantvegetableoil.ItsmajorproducersareArgentina,Canada,China,USandIndia.Theannualproductionofthisoilwasreportedas2.6mil-liontonsworldwideand0.20milliontonsinIndiaintheyear2002–2003[14,15].ThepaintandalliedindustriesaremajorconsumersoflinseedoilinIndiaaccountingfor70%ofthetotalconsumption.Aliteraturesurveyhasrevealedthatthemodificationoflinseedoilfattyamidediolbyo-phenylenediamineandfurtherwithpoly(styrene-co-maleicanhydride)hasnotbeenundertaken.Wenowreportthesynthesisofaminemodifiedfattyamidediol.TheproposedreactionschemesforthesynthesisandcuringoftheresinswereconfirmedbyFT-IR,1H-NMRand13C-NMRspectroscopictechniques.ThermalstudieswerecarriedoutbyTGAandDSCtechniques.Thephysico-

mechanicalandchemicalresistancepropertiesofcoatingswerestudiedbystandardmethods.

ExperimentalProceduresMaterials

Linseed(LinumusitatissimumL.,Iodinevalue=181,dryingindex=102)wasfinelypowderedinaseedgrinder.OilwasextractedfromitinaSoxhletapparatusbyrefluxinginpetroleumether.Oilwasseparatedfromthesolventinarotaryevaporatorandwassuitablypurified.ThefattyacidcompositionoftheoilwasdeterminedusingitsmethylesteronaHewlett-Packard5890SeriesIIgasliquidchroma-tographywithFIDdetector.Theinjectiontemperaturewas250°C;nitrogenwasusedasthecarriergasataflowrateof20mL/min.Thefattyacidcompositionwasobservedasoleicacid22%,linoleicacid14%,linolenicacid44%pal-miticacid5%stearicacid4%.Xylene,sodiummethoxide,diethanolamine(Merck,India),o-phenylenediamine(LobaChemie,India),poly(styrene-co-maleicanhydride),averagemolecularwt.1,600Da(AldrichChemicalCompany,USA),ethyleneglycolmonomethylether(Qualigens,India)wereusedasreceived.Characterization

Thephysico-chemicalpropertiessuchasiodinevalue,hydroxylvalue,acidvalue,saponificationvalue,specificgravityandrefractiveindexweredeterminedbystandardlaboratorymethods(Table1).TheinherentviscosityofPAAandPAA–SMAinethyleneglycolmonomethylether(EGME),0.5g/100ml,wasdeterminedbyanUbblehodeviscometerat25°C.Thesolubilityoftheresinwasalsotestedinvariousorganicsolventsnamely,dimethylsulf-oxide,ethyleneglycolmonomethylether,tetrahydrofuran,ethanol,methanol,ethylmethylketone,xylene,toluene,benzene,chloroform,1-4dioxane,acetone,carbontetrachloride,N,N-dimethylformamide,heptane,diethylether.

Table1Physico-chemicalcharacterizationofPAAandPAA–SMAresinsResincode*PAAPAA-20PAA-25PAA-30PAA-35PAA-40

Iodinevalue855450484747

Acidvalue–1.772.503.004.504.70

Hyd.value18.0714.8413.8812.0011.0710.01

Ref.index1.51501.45901.46531.50821.49801.4943

Inh.viscosity0.60050.61650.62690.64550.66580.6700

Sap.value–7578798589

Specificgravity0.97020.98200.98530.98710.98880.9891

DTT(min)–3025151010

*LasttwodigitsindicatethephrofSMA

Hydhydroxyl,Inhinherent,Sapsaponification,DTTdrytotouchtime

123

www.51zhgao.com

JAmOilChemSoc(2009)86:573–580

575

FT-IRspectraoftheseresinsweretakenonPerkinElmer1750FT-IRspectrophotometer(PerkinElmerCetusInstrument,Norwalk,CT,USA)usingNaClcell.1H-NMRand13C-NMRspectrawererecordedonaBrukerSpec-trospinDPX300MHzusingdeuteratedchloroform(CDCl3)assolventandTMSasaninternalstandard.ThermalanalysisofPAA–SMAwascarriedoutbyTGA51(TAInstrument,USA)andthecuringbehaviorwasstudiedbyDSC(DSC10,TAInstrument,USA)inanitrogenatmosphereattheheatingrateof20°C/min.SynthesisofN,N-Bis(2-hydroxyethyl)LinseedFattyAmide(HELA)(Scheme1)

HELAwaspreparedaccordingtopreviouslyreportedmethod[4].SpectralAnalysis

FT-IR,cm-1:3370(OHattachedtoCH2);2853(CH2symmetrical);2928(CH2asymmetrical);3010(–CH=CHunsaturation);1620(C=Oamide).1H-NMR,CDCl3,d,ppm:1.30–1.25(m,–CH2–8H);5.30(q,–CH=CH,–6H);3.52(t,–CH2OH,4H);5.18(s,CH2OH,2H);0.87–0.99(t,–CH3,3H)(Fig.1a).13C-NMR,CDCl3,d,ppm:175(C=O,amide);32–22(CH2fattyamidechain);14(CH3fattyamidechain);60(–CH2OH);130–127(–CH=CH–)Fig.2a).SynthesisofPoly(Amine–Amide)(PAA)(Scheme2)HELA(0.02mol)ando-phenylenediamine(0.02mol)weredissolvedinxylene(50ml)andwereplacedinafour-neckedround-bottomflaskfittedwithaDeanStarkTrap,anitrogeninlettube,athermometerandamechanicalstirrer.Thereactionmixturewasheatedat150±5°CandrefluxeduntilthecalculatedamountofwaterwascollectedintheDeanStarkTrap.Theprogressofthereactionwasmonitoredbythinlayerchromatography(TLC)andbythedeterminationofthehydroxylvalueatregularintervals.Afterthecompletionofthereaction,xylenewasremovedfromtheproductunderreducedpressuretoobtainPAA.Thelatterwaspurifiedbyrepeatedlywashingwithdistilledwatertilltheunreactedcompoundswerecompletelyremoved.Itwasfurtherwashedwithmethylalcoholanddriedinvacuumovenat60°C.

SpectralAnalysis

FT-IR,cm-1:3390(OHattachedtoCH2,NHattachedamine);2854(CH2symmetrical);2927(CH2,asymmetri-cal);3011(–CH=CH,unsaturation);1654(C=O,amide);1508,762(aromatic).1H-NMR,CDCl3,d,ppm:3.53–3.50(NH2);3.56–3.55(NH);2.3–2.6(–CH2amide);7.5–6.71(aromatic);3.50–3.48(CH2–NH);0.83(–CH3fattyamidechain)(Fig.1b).13C-NMR,CDCl3,d,ppm:175(C=O,amide);22.1–29.1(CH2fattyamidechain);13.8(CH3);38(–CH2–N);144.6(aromaticcarbonattachedtoNH2)(Fig.2b).

SynthesisofPAA–SMA(Scheme3)

10.00gPAAwasdissolvedin20mlxylene;10mlof2.0,2.5,3.0,3.5and4.0%w/vsolutionofSMAinethyleneglycolmonomethyletherwasmixedseparatelywithpre-vioussolutiontoobtain20–40phrloadingofSMAinafour-neckedround-bottomflaskfittedwithacondenser,anitrogeninlettube,athermometerandamagneticstirrer.Thereactionwascarriedoutunderstirringat150°C.TheprogressofthereactionwasmonitoredbytheacidvalueandTLC.IneachcasewefoundthatSMAhadfullyreacted.Thesolventwasremovedfromtheresininarotaryvacuumevaporator.SpectralAnalysis

FT-IR,cm-1:3368(OH,NH);1654(C=Oamide);2854(CH2symmetrical);2927(CH2asymmetrical);3011(–CH=CHunsaturation);1508,762(aromatic);702(sty-rene).1H-NMR,CDCl3,d,ppm:3.53–3.50(NH2);3.56–3.55(NH);2.3–2.6(–CH2amide);7.5–6.71(aromatic),3.50–3.48(CH2–NH)0.83(–CH3fattyamidechain);2.1(CH-styrene);CH2-Styrene)(Fig.1c).13C-NMR,CDCl3,d,ppm:175(C=O,amide);22.1–29.1(CH2fattyamidechain);13.8(CH3fattyamidechain);38(–CH2–N);144.6(aromaticcarbonattachedtoNH2);40–58(CH2,CHofStyrene)(Fig.2c).

ThepresenceofabovementionedcharacteristicpeaksinFT-IR,1H-NMRand13C-NMR(Figs.1,2)confirmstheformationofHELA,PAAresinandcuringreactionbetweenPAAandSMA.

123

576

Fig.11H-NMR,aHELA,bPAA,cPAA–SMA123

JAmOilChemSoc(2009)86:573–580

a cabbcHO-H2C-H2CCH2-CH2-OHNC=OCH2-CH2-(CH2)4-CH2-CH=CH-CH2-(CH=CH-CH2)-CH3defghijhikl b nopbcmHHHO-2HC-2HCCH2-CH2-NNHaNnC=OCHd2-CHe2-(CH2)4-CH2-CH=CH-CH2-(CH=CH-CH2)fghijhi2-CH3kl c CHrnCH2spabcmHoHqOCH-CH-HHO-2HC-2HCCH2-CH2-NNCqNCN-HNC=OOmR JAmOilChemSoc(2009)86:573–580Fig.213C-NMR,aHELA,bPAA,cPAA–SMA

577

123

578JAmOilChemSoc(2009)86:573–580

3091091mmsizesforchemicalresistanceandon7092591mmsizestodeterminethespecularglossat45°byGlossmeterRSPT20,(DigitalInstruments,SantaBarbara).Physico-mechanicalproperties,viz.scratchhardness(BS3900),impactresistance(IS:101part5/s3,1988)andbendtest(ASTM-D3281-84)ofthecoatingsweredeterminedbyrespectivestandardmethodsindicatedintheparentheses.Thedrytotouch(DTT)anddrytohard(DTH)timeshavealsobeennoted.ThethicknessofthesecoatingsweredeterminedbyElcometermodel345(ElcometerInstruments,Manchester,UK)andwerefoundtobe85–90lm.Corrosiontestswereperformedinacid(5wt.%HCl),alkali(2and5wt.%NaOH)waterandxylenebyplacingthemin3-in.diameterporcelaindishesintheaforementionedmedia.Theacceleratedcorrosiontestwasalsocarriedoutbysaltspraytestinasaltmistchambercontaining3.5wt.%NaCl(ASTMD1654).Periodicvisualexaminationwasconducteduntilthefilmshowedevidenceofsofteningordeterioration(Table2).

ResultsandDiscussion

Scheme1showslinseedoilwasconvertedtoHELAbyaminolysis.PAAwassynthesizedbythecondensationpolymerizationreactionbetweenHELAando-phenylenediamineinanequimolarratioat150°C.Inthisreaction,OHgroupofHELAreactswithNH2ofo-phenylenedia-mine(Scheme2).PAAisfurthermixedwithPoly(styrene-co-maleicanhydride)indifferent(20–40)phr(Scheme3)toobtainaseriesofPAA–SMAresins.ThestructuresofHELA,PAAandthecuringreactionofPAAwithSMAwereascertainedwiththehelpofFT-IR,1H-NMRand13C-NMRspectralanalyses.

PreparationandTestingofCoatings

ThePAA–SMAresin(40wt.%)solutionwasappliedbybrushoncommerciallyavailablemildsteelstripsof

Physico-ChemicalCharacterization

Table1revealsinformationaboutthechangeiniodine,saponification,refractiveindex,inherentviscosityand

Table2Physico-mechanicalandchemicalresistanceperformanceofPAA–SMAsystemsResincode*

Scratch

hardness(Kg)

Impactresistance(lb/in.)

Bendtest(1/8in.)

Gloss(45°)

CorrosionresistancetestNaOH(2wt.%)(12h)

PAA-25PAA-30PAA-35PAA-40

1.52.53.02.5

250250250250

PassesPassesPassesPasses

70809093

eecc

(5wt.%)(2h)eecc

HCl(5wt.%)(5days)ddcc

NaCl(3.5wt.%)(8days)bbaa

H2O(7days)

Xylene(5days)

decc

eedd

*ThelasttwodigitsindicatethephrofSMA

(a)Lossingloss,(b)slightlossinglossandfilmswell,(c)unaffected,(d)filmslightlyswell,(e)filmcompletelyremoved

123

JAmOilChemSoc(2009)86:573–580specificgravityvaluesofPAAandPAA–SMAofdifferentcompositions.PMA–SMAresinwasdissolvedinxylenetofindouttheabovephysico-chemicalcharacteristics.TheOHvalueduringtheprogressofthereaction(Scheme2)wasfollowedbyquantitativelydeterminingitsvaluebythestandardmethod(ASTMD1957-86)inTable1.ItwasobservedthattheOHvaluedecreasedasthereactionprogressed.ThisshowsthatPAAhadreactedwithSMA.Asaresultofthereactionthemolarmassoftheresin,PAA–SMAwillincreaseinproportiontothephrofSMA,whichwillalsocontributetotheiodinevalue,refractiveindexandspecificgravityofthesame.

PAA–SMAresinwasalsosubjectedtosolubilitytestsinvariousorganicsolventsatroomtemperature.PAA–SMAwerecompletelysolubleindimethylsulfoxide,ethyleneglycolmonomethylether,tetrahydrofuran,ethanol,metha-nol,ethylmethylketone,xylene,toluene,benzene,chloro-form,1-4dioxane,acetone,carbontetrachlorideandN,N-dimethylformamide;itwasinsolubleinheptaneandpartiallysolubleindiethylether.Thesolubilitybehaviorsuggeststhattheresincontainsexcessivepolargroups.CoatingProperties

Thephysico-mechanicalandchemicalresistanceperfor-manceofPAA–SMA(20–40phr)aregiveninTable2.Thedrytotouch(DTT)timewasfoundtodecreaseuptoPAA-35.Beyondthiscomposition,DTTofresinswasfoundtobeconstant(10min).Thevaluefordrytohard(DTH)time,whichiscorrelatedtothecompletecuringofalltheseresins,wasfoundtobe10–12days.ScratchhardnessvalueswerefoundtoincreaseuptoPAA-35afterthatdecreaseinscratchhardnessvalueswasobserved.Itshowsthattheoptimumextentofcross-linkingofcoatingsisachievedatPAA-35.Allthesecoatingspassthe250lb/in.impacttestwhichshowsgoodadhesionofcoatingstothesubstrateduetotheincreasenumberofpolargroupsinthePAA–SMAsystem.Itwasobservedthatthesecoatingsshowgoodbendtestvalues(1/8in.)indicatinggoodflex-ibilityduetothepresenceofdanglingalkylchain.TheincreasednumbersofpolargroupsinPAA–SMAcoatingsimpartgoodadhesionbetweenthecoatingsandmetalsurface;thiswillcauseanincreaseinimpactresistanceashasbeenobserved.

ItwasfurtherobservedthattheglossvaluesincreasedwithanincreaseinSMAcontent.Weconsidertheglossisafunctionofsurfacesmoothnessbutotherfactorslikethenatureofmoleculeinthefilmandthemolecularstructurealsocontributetothegloss.Inourcase,weattributetheenhancementoftheglosstothemolecularstructureandfavorablenetworkformation.Asthemethodofpreparationofthefilminallcasesisthesame,hencethesurfacesmoothnesswouldalsobethesame;theenhancementin

579

thegloss,therefore,isattributedtothedensemolecularnetworkformation.

Table2revealsthatPAA-35andPAA-40amongallPAAcoatingsystems,exhibitedbestchemicalresistancepropertiesinmineralacid,salineandaqueousenvironmentandalsoinanalkalineenvironment.Thecoatingsoftheaforementionedresinswerefoundtopossessmuchhigheralkaliresistancepropertiesthanotherreportedpolyestera-midecoatings[5].Surprisingly,PAA–SMAsystemsfailtogivesatisfactoryperformanceinxylene;PAA-35andPAA-40werefoundtoswellin5dayswhilePAA-20andPAA-25werecompletelyremovedinthisperiod,pre-sumablybecauseofthepresenceofSMAmoietiesinthemodifiedSMA.ThermalAnalysis

TheTGAthermogram(Fig.3)ofPAA-35showsa5wt.%lossoftheresinat240°Cwhichcanbecorrelatedtotheevaporationoftheentrappedsolvent10wt.%lossisobservedat305°C,buttheinitialdecompositiontemper-atureappearstocorrespondto325°C.Theresinshows50wt.%lossat415°Cwhileitdecomposescompletelyat525°C.

Thepeakat35°CisspuriousandhasnosignificanceintheDSCthermogram.Figure4showsanendothermicpeakwhichextendsfrom90to150°CforPAA-30andPAA-35,respectively.ThepeaksforPAA-30andPAA-35are,respectively,centeredat120and125°C.IntheTGAthermogram,noweightlossisobservedattheaforemen-tionedtemperatures.Theendothermsare,therefore,con-sideredtorepresentthemeltingoftheresins.AsmallincreaseisobservedinmeltingpointswiththeincreaseintheloadingofSMA.ThehigherSMAcontentwithalargeramountofaromaticmoietyappearstocontributetotheincreaseinthemeltingpointoftheseresins.Beyond150°C,anexothermensueswhichextendsovertherestoftheDSCtrace.Thethermogramsshowtheonsetof

123

580decompositionat325°CwhichisalsoobservedinthecaseofTGA.

Conclusion

ThesynthesisofPAA–SMAresinfromlinseedoilprovidesanewwaytoutilizeasustainableresourcebasedrawmaterial.PAA–SMAresinshowsgoodalkaliresistanceascomparedtoreportedpolyesteramidecoatings[5].Thesystemhasagoodcombinationofpropertiesofamine,ester,styreneandamidelinkagesintermsofphysico-mechanicalproperties.TGAthermogramsrevealthatPAA-35showsthebestperformanceandcanbesafelyusedupto305°C.

AcknowledgmentsDr.ManawwerAlamgratefullyacknowledgesfinancialsupportbytheCouncilofScientificandIndustrialResearch(CSIR),NewDelhi,IndiaforResearchAssociateagainstGrantNo.9/86/0859/08EMR-I.

123

JAmOilChemSoc(2009)86:573–580

References

1.ErenT,KusefogluSH,WoolR(2003)Polymerizationofmaleicanhydride-modifiedplantoilswithpolyols.JApplPolymSci90:197–202

2.AhmadS,AshrafSM,SharminE,AlamM(2005)Ambientcuredtartaricacidmodifiedfattyamidebasedanticorrosivecoatings.JMacromolSci(PAC)42:751–764

3.HungJ,LiK(2008)Anewsoyflour-basedadhesiveformakingInteriortypeIIplywood.JAmOilChemSoc85:63–70

4.AlamM,SharminE,AshrafSM,AhmadS(2004)Newlydevelopedurethanemodifiedpolyetheramidebasedanticorrosivecoatingsfromasustainableresource.ProgOrgCoat50:224–2305.AhmadS,NaqviF,VermaKL,YadavS(1999)Studiesonanewlydevelopedlinseedoil-basedalumina-filledpolyesteramideanticorrosivecoating.JApplPolymSci72:1679–1687

6.AhmadS,AshrafSM,SharminE,NazirM,AlamM(2005)Studiesonnewpolyetheramide-butylatedmelamineformalde-hydebasedanticorrosivecoatingsfromasustainableresource.ProgOrgCoat52:85–91

7.AhmadS,AshrafSM,ZafarF(2007)Developmentoflinseedoilbasedpolyesteramidewithoutorganicsolventatlowertempera-ture.JApplPolymSci104:1143–1148

8.HomrighausenCL,KellerTM(2002)Synthesisandcharacter-izationofasilarylene–siloxane–diacetylenepolymeranditcon-versiontoathermosettingplastic.Polymer43:2619–2623

9.RoyTK,MannariVM,RavalDA(1997)Synthesisandappli-cationsofoilmodifiedpolyesteramideresinsforsurfacecoating.JSciIndResMarch56:159–163

10.MosiewickiM,ArangurenMI,BorrajoJ(2005)Mechanical

propertiesoflinseedoilmonoglyceridemaleate/styrenecopoly-mers.JApplPolymSci97:825–836

11.HsiaoSH,YangCP,ChenCW,LiouGS(2004)Synthesisand

propertiesofnovelpoly(amide-imide)scontainingpendentdiphenylaminogroups.EurPolymJ41:511–517

12.VreugdenhilAJ,WoodsME(2005)Triggeredreleaseof

molecularadditivesfromepoxy-aminesol–gelcoatings.ProgOrgCoat53:119–125

13.AtaeiSM(2005)Soluble,thermallystablepoly(esteramide)s

derivedfromterphthalicacidbis(carboxydiphenylmethyl)esteranddifferentdiamines.EurPolymJ41:65–71

14.BarnwalBK,SharmaMP(2005)Prospectsofbiodieselproduc-tionfromvegetableoilsinIndia.RenewableSustainableEnergyRev9:363–378

15.ScrimgeomurC(2005)Chapter1.In:ShahidiF(ed)Bailey’s

industrialoilandfatproducts,6volumeset,6thedn.Wiley,NewYork

因篇幅问题不能全部显示,请点此查看更多更全内容