您的当前位置:首页正文

小升初工程问题全解

2020-09-29 来源:汇智旅游网
1、 一项工程,甲、乙合作要12天完成;如果甲先做三天后,再有乙接着做8天,共完成这项工程的5/12。如果这件工程有甲、乙单独完成各需多少天? 分析:

(1)一项工程,甲、乙合作要12天完成. 说明:那么甲、乙两人每天做这项工程的1/12.

(2)如果甲先做三天后,再有乙接着做8天,共完成这项工程的12/5.

说明:这时候,我们就可以将条件改变为如果甲乙两人先做3天后,再由乙接着做8-3=5(天),共完成这项工程的5/12.

(3)改变条件后,这一题便好解决多.如果甲乙两人先做3天后,就做了这项工程的(1/12)*3=1/4,那么盛夏的5/12-1/4=1/6就由乙5(天)完成任务.

则可以求出乙的工作效率是(1/6)/5=1/30,单独做就需要1/(1/30)=30(天). (4)则甲的工作效率是1/12-1/30=1/20,那就要1/(1/20)=20(天).

工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。它是函数一一对应思想在应用题中的有力渗透。工程问题也是教材的难点。工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

因此,在教学中,如何让学生建立正确概念是数学应用题的关键。本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

联系实际谈话引入。引入设悬,渗透概念。目的在于让学生复习理解工作总量、工作时间、工作效率之间的概念及它们之间的数量关系。初步的复习再次强化工程问题的概念。

通过比较,建立概念。在教学中充分发挥学生的主体地位,运用学生已有的知识“包含除”来解决合作问题。

合理运用强化概念。学生在感知的基础上,于头脑中初步形成了概念的表象,具备概念的原型。一部分学生只是接受了概念,还没有完全消化概念。所以我编拟了练习题,目的在于通过学生运用,来帮助学生认识、理解、消化概念,使学生更加熟练的找到了工程问题的解题方法。在学生大量练习后,引出含有数量的工作问题,让学生自己找到问题的答案。从而又一次突出工程问题概念的核心。

在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 ——工作量=工作效率×时间.

在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子.:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?

一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,

再根据基本数量关系式,得到 所需时间=工作量÷工作效率 =6(天)? 两人合作需要6天.

这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的. 为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是 30÷(3+ 2)= 6(天)

数计算,就方便些.

∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是

因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.

一、两个人的问题

标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.

例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

解一:甲每天完成1/9,乙每天完成1/6。甲先做了3天,即做了整个工作的3/9,还剩下6/9,则乙完成剩余工作的天数为:6/9÷1/6=4 答:乙需要做4天可完成全部工作.

解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 × 3)÷ 3= 4(天).

解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3.

甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).

例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? 解:共做了6天后,

原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天.

这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率 如果乙独做,所需时间是 如果甲独做,所需时间是

答:甲或乙独做所需时间分别是75天和50天.

例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?

解:先对比如下:

甲做63天,乙做28天; 甲做48天,乙做48天.

就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56天.

例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?

解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天).

答:从开始到完工共用了11天.

解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作

(30- 3 × 8- 1× 2)÷(3+1)= 1(天). 解三:甲队做1天相当于乙队做3天.

在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1,

其中3天可由甲队1天完成,因此两队只需再合作1天.

例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?

解一:如果16天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是

乙队休息的天数是 答:乙队休息了5天半.

解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份. 两队休息期间未做的工作量是 (3+2)×16- 60= 20(份). 因此乙休息天数是

(20- 3 × 3)÷ 2= 5.5(天). 解三:甲队做2天,相当于乙队做3天. 甲队休息3天,相当于乙队休息4.5天.

如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是

16-6-4.5=5.5(天).

例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.

设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要 (60-4×8)÷(4+3)=4(天). 8+4=12(天).

答:这两项工作都完成最少需要12天.

例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他们要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?

解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份. 两人合作,共完成

3× 0.8 + 2 × 0.9= 4.2(份).

因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,

所以两人合作的天数是

(30-3×8)÷(4.2-3)=5(天). 很明显,最后转化成“鸡兔同笼”型问题.

例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时 ,如果这件工作始终由甲一人单独来做,需要多少小时? 解:乙6小时单独工作完成的工作量是 乙每小时完成的工作量是

两人合作6小时,甲完成的工作量是 甲单独做时每小时完成的工作量 甲单独做这件工作需要的时间是 答:甲单独完成这件工作需要33小时.

这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每 有一点方便,但好处不大.不必多此一举.

二、多人的工程问题

我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.

例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成? 解:设这件工作的工作量是1.

甲、乙、丙三人合作每天完成

减去乙、丙两人每天完成的工作量,甲每天完成

答:甲一人独做需要90天完成.

例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?

例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天? 解:甲做1天,乙就做3天,丙就做3×2=6(天).

说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了 2+6+12=20(天).

答:完成这项工作用了20天.

本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了

例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?

解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.

他们共同做13天的工作量,由甲单独完成,甲需要 答:甲独做需要26天.

事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.

例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作? 解一:设这项工作的工作量是1. 甲组每人每天能完成 乙组每人每天能完成

甲组2人和乙组7人每天能完成

答:合作3天能完成这项工作.

解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.

现在已不需顾及人数,问题转化为:

甲组独做12天,乙组独做4天,问合作几天完成?

小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.

例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件? 解一:仍设总工作量为1. 甲每天比乙多完成 因此这批零件的总数是 丙车间制作的零件数目是 答:丙车间制作了4200个零件.

解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.

乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知 乙、丙工作效率之比是16∶14=8∶7. 已知

甲、乙工作效率之比是 3∶2= 12∶8. 综合一起,甲、乙、丙三人工作效率之比是 12∶8∶7.

当三个车间一起做时,丙制作的零件个数是 2400÷(12- 8) × 7= 4200(个).

例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时.

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.

三人共同搬完,需要

60 × 2÷ (6+ 5+ 4)= 8(小时). 甲需丙帮助搬运

(60- 6× 8)÷ 4= 3(小时). 乙需丙帮助搬运

(60- 5× 8)÷4= 5(小时).

三、水管问题

从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.

例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米? 甲每分钟注入水量是 乙每分钟注入水量是 因此水池容积是

答:水池容积是27立方米.

例16 有一些水管,它们每分钟注水量都相等.现在按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根

水管?

答:开始时打开6根水管.

例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要 、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池?

,否则开甲管的过程中水池里的水就会溢出.

以后(20小时),池中的水已有

此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?

看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.

因此,答案是28小时,而不是30小时.

例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?

解:先计算1个水龙头每分钟放出水量. 2小时半比1小时半多60分钟,多流入水 4 × 60= 240(立方米).

时间都用分钟作单位,1个水龙头每分钟放水量是 240 ÷ ( 5× 150- 8 × 90)= 8(立方米), 8个水龙头1个半小时放出的水量是 8 × 8 × 90,

其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).

打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要

5400 ÷(8 × 13- 4)=54(分钟). 答:打开13个龙头,放空水池要54分钟.

水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.

例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空? 解:设满水池的水量为1. A管每小时排出 A管4小时排出

因此,B,C两管齐开,每小时排水量是 B,C两管齐开,排光满水池的水,所需时间是 答: B, C两管齐开要 4 小时 48分才将满池水排完.

本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.

17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.

例20 有三片牧场,场上草长得一样密,而且长得一 草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?

解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定

“一头牛每星期吃草量”作为草的计量单位.

原有草+4星期新长的草=12×4. 原有草+9星期新长的草=7×9. 由此可得出,每星期新长的草是 (7×9-12×4)÷(9-4)=3. 那么原有草是

7×9-3×9=36(或者12×4-3×4).

对第三片牧场来说,原有草和18星期新长出草的总量是 这些草能让

90×7.2÷18=36(头) 牛吃18个星期.

答:36头牛18个星期能吃完第三片牧场的草.

例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗? “牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.

例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分? 解:设一个入场口每分钟能进入的观众为1个计算单位. 从9点至9点9分进入观众是3×9, 从9点至9点5分进入观众是5×5.

因为观众多来了9-5=4(分钟),所以每分钟来的观众是 (3×9-5×5)÷(9-5)=0.5. 9点前来的观众是 5×5-0.5×5=22.5.

这些观众来到需要 22.5÷0.5=45(分钟).

答:第一个观众到达时间是8点15分.

例1、 挖一条水渠,甲、乙两队合挖要六天完成。甲队先挖三天,乙队接着挖一天,

可挖这条水渠的3/10,两队单独挖各需几天? 例2、 分析: 甲乙合作1天后,甲又做了2天共3/10-1/6=4/30 例3、 2÷(3/10-1/6) 例4、 =2÷4/30 例5、 =15(天)

例6、 1÷(1/6-1/15)=10(天)

例7、 答:甲单独做要15天,乙单独做要10天 .

例2.一件工作,如果甲单独做,那么甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙二人合作,完成工作需多长时间?

解设:规定时间为X天.(甲单独要X-2天,乙单独要X+3天,甲一共做了2天,乙一共做了X天)

1/(X-2)×2 + X/(X+3)=1 X=12

规定要12天完成 1÷[1/(12-2)+1/(12+3)] =1÷(1/6) =6天

答:两人合作完成要6天.

例3:一项工程,甲单独做63天,再由乙做28天完成,甲乙合作需要48天完成。甲先做42天,乙做还要几天? 答:设甲的工效为x,乙的工效为y 63x+28y=1 48x+48y=1

x=1/84 y=1/112

乙还要做(1-42/84)/(1/112)=56(天)

【含义】??? 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】? 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

????????????工作量=工作效率×工作时间???? ????????????工作时间=工作量÷工作效率

????????????工作时间=总工作量÷(甲工作效率+乙工作效率) 【解题思路和方法】? 变通后可以利用上述数量关系的公式。

例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解? 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的 1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

由此可以列出算式:???1÷(1/10+1/15)=1÷1/6=6(天) ???????????????????????? 答:两队合做需要6天完成。

例2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解? 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?

???????????????? 24÷[1÷(1/6+1/8)]=7(个) (2)这批零件共有多少个???????

???????????????? ?7÷(1/6-1/8)=168(个) ????????????????????????? 答:这批零件共有168个。 解二? 上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为? 1/6∶1/8=4∶3 由此可知,甲比乙多完成总工作量的? 4-3? /? 4+3? =1/7 所以,这批零件共有??? 24÷1/7=168(个)

例3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解? 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

??????????? 60÷12=5??? 60÷10=6??? 60÷15=4?????????? 因此余下的工作量由乙丙合做还需要?????? ?????????? (60-5×2)÷(6+4)=5(小时)

??????????????????????? 答:还需要5小时才能完成。

例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解? 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为??? (1×2×15-1×4×5)÷(15-5)=1 即一个排水管与每个进水管的工作效率相同。由此可知 一池水的总工作量为?? 1×4×5-1×5=15??

又因为在2小时内,每个进水管的注水量为? 1×2,??? 所以,2小时内注满一池水

至少需要多少个进水管?? (15+1×2)÷(1×2) ?????????????????????? =8.5≈9(个)

???????????????????????答:至少需要9个进水管。

因篇幅问题不能全部显示,请点此查看更多更全内容