您的当前位置:首页正文

General relativity limit of the scalar-tensor theories for traceless matter field

2020-04-26 来源:汇智旅游网
Generalrelativitylimitofthescalar-tensortheoriesfor

tracelessmatterfield

arXiv:gr-qc/0204014v1 3 Apr 2002A.Bhadra∗

HighEnergyandCosmicRayResearchCentreUniversityofNorthBengal,Siliguri734430INDIA

Abstract

ω(φ)→∞limitofscalartensortheoriesarestudiedfortracelessmattersource.Itisshownthatthelimitω(φ)→∞doesnotreduceascalartensortheorytoGR.AnexactradiationsolutionofscalartensorcosmologyundermodifiedNordtvedtconditionsisobtainedforflatFriedmannuniverse.

PACSnumbers:04.50.+h

I.Introduction

RecentlyDamourandNordtvedt[1]hasbeendemonstratedquitegenerallythatscalarten-sor(ST)theoriesgenericallycontainanaturalattractormechanismtowardgeneralrelativity(GR).Suchapossibilitywasalsosuggestedpreviously[2,3]butonlyforsomeparticularclassesofmodels.ThismeansSTtheoriesarecosmologicallyevolvedtowardastatewithnoscalaradmixturetogravityduringmatterdominatedera[1]orevenduringradiationera[3,4,5].Thisattractorfeatureisimportantbecauseitdiminishesthedoubtontheexistenceofmass-lessscalarfieldwithgravitational-strengthcouplingbyprovidingreasonableexplanationforthesmalleffectofthescalarfields(incomparisonwithcurvatureeffect)inthepresentepochwithoutrequiringanyfine-tunedlargevalueofthecouplingparameterasneededinthecaseofcelebratedBrans-Dicke(BD)theory[6].Itisworthmentioningthatascalarpartnerto

bhadra@yahoo.com

1

gravityisinevitableinmosteffortsatunifyinggravitywiththeotherinteractions,suchassu-perstringtheories[7]orKaluza-Klientheories[8].Incosmologyalso,thescalarfieldisfoundtoplayanappreciablerolebyprovidinganaturalwaytoovercomethefinetuningproblemof”new”inflationarymodelofuniversebyterminatingtheinflationaryerathroughnucleationofbubbles[9].Thepresentaccelerationoftheuniverse,asrevealedfromtheobservationaldataofthetype1asupernova[10],alsocanbeaccommodatewiththescalarfieldcoupledgravitytheorieswithouttheneedofanynewkindofmatterfield(socalled”Quintessencematter”)havingapositiveenergydensitybutanegativepressure[11,12].

TheattractormechanismisbasedontheideathataSTtheoryconvergestoGRforcertainvaluesofthecharacteristiccouplingparameterω(φ),whichrepresentsthestrengthofthecou-plingbetweenthescalarfieldandthecurvature.Duringcosmologicalevolution,theEinstein

˜)tendstozero[1]orequivalentlyinJordanframeω(φ)→∞framecouplingparameterα(φ

1˜)≡(α2(φ

Jordanframe,weshallworkinthisframethroughoutthepaper),thegeneralformoftheactiondescribingamasslessscalar-tensortheoryofgravityinnaturalunits(G=c=1)is[17,18]

A=

1

󰀊

−gd4xφR−

ω(φ)

2

gµνR=

φ28π

󰀅

φ,µφ,ν−

1

φ

(φ,µ;ν−gµν2φ),

(2)

2φ=

2ω(φ)+3

gµνφ,µφ,ν;

(3)

withtheenergymomentumconservationequation

T;µνν=0,

µ

where2≡gµν∇µ∇ν,T=Tµisthetraceofthematterenergymomentumtensorandω′≡

(4)

1−kr2

+r2dΩ2;

󰀋

(5)

curvatureconstantk=−1,0,+1foranopen,flatorcloseduniverserespectively.Theconditionofhomogeneityimpliesthatthescalarfieldisonlyafunctionofthetimecoordinate,φ≡φ(t).Fortheabovelineelement,theEq.(4)reducesto

ρ˙+3

whereanoverdotdenotesd/dt.ForaradiationuniversewithequationofstateP=

1

(2)and(3)thusyield

a˙2

φa4

+a˙2+k

φa4−k

Γa−4

(7)

whereΓisapositiveconstant.Γ=0correspondstovacuum(ρ=P=0).Thefieldequations

a˙φ−ω(φ)

φ2

6−2

˙φa−¨φ˙2φ

a

a

˙2ω′(φ)φ˙φ=−

φ

.

III.Non-convergenceofSTtheoriestoGR

Thefirstintegraloftheequation(10)immediatelygives,

˙=φ

A(3+2ω(φ))

(11)

whereAisaconstant.TheaboveequationistrueforanyradiationorvacuumcosmologicalFriedmannsolutionandisvalidforallSTtheories.ItistobenotedthatsinceAisindependentoftime,itcannotbeafunctionofω(φ)butforBrans-Dicketheory(ωisconstant)Amay˙fromEq.(11)intoEqs.(8)and(9)wegetunderthelimitω(φ)→∞dependonω.Insertingφ

a˙2+k

φa4

+

A2

a

+

a˙2+k

φa4

A2

ω2(φ)

).(13)

4

andtheRicciscalarinthesamelimitisgivenby

R≃−

1

4ω2(φ)

−1

a6

,

(14)

Whenascalar-tensortheoryconvergestoGR,thescalarcurvaturemustapproachtozeroandatthesametime,thescalarfieldmustbecomeaconstantaswell.ItisevidentfromEq.(11)thatasω(φ)→∞,φistendingtoaconstantvalue(1).AshouldnotvanishinthislimitsinceAisindependentofω(φ).a(t)mustbeboundedforanyrealistictheoryofgravity.ThenitfollowsfromEq.(14)thatRisnotapproachingitsGRvalue(0)forlargevalueofω(φ)orevenfortheNordtvedtconditions[17]viz.ω(φ)→∞,

ω′(φ)

ω2(φ)

→0(15)

Butevenforsuchmodifiedconditions,Rremainsnon-zeroandthefieldequationsareclearlydifferentfromthecorrespondingGRequationswiththesameenergymomentumtensor.ThisshowsthatGRcannotberecoveredfromSTtheoriesbyimposingconstraintsonthecouplingparameterω(φ).

IV.Radiationsolution

Toobtainsolutionofthesimultaneousequations(12)and(13)undermodifiedNordtvedtconditions,wefirstwritetheseequationsinthesynchronousgauge

a+ka=Γ+

′2

2

A2

4a2

5

(17)

whereprimedenotesd/dηandtheconformaltimeηisdefinedthrough

adη=dt

Forflatuniverse(k=0),solutionof(16)and(17)is

a(η)=

󰀈

(18)

A

η+Γη23

󰀉1/2

;(19)

andthecosmictime(t)isrelatedwiththeconformaltime(η)viat=

󰀁

adη=

󰀈

ηA+3Γ

12Γ3/2

Log2

󰀊

󰀃

3√

󰀆

φ0

)−α;α>0,B1>0constants.ThetheoryreducestoBarker’s“constant”Gtheory

[20]forα=1andB1=−1/2andtoBrans-Dicketheory[6]forα=0.Thetheoryhasbeenstudiedextensivelyin[3,5,19].Theexactradiationsolutionsforα=1isgivenby[19]

φ(η)=

4φ0Kληλ(η+2η0)λ

φ(η)

(22)

whereλ=(3/2B1)1/2,andKandη0areconstants.Asω(φ)→∞,scalarfieldapproachesφ0andtheexpressionforscalefactor(22)indeedconvergesto(19).ItisclearfromEqs.(19)and(20)thatforlargeη,t→large,thescalefactordiffersfromthatofGR.

√2

η2anda∝t1/2i.e.,thesolution

approachestheusualradiationdominatedFriedmannmodelofGR.Butwhentisnotvery

V.Conclusion

Theevolutionofscalarfieldsuggests[3,4,5]thatthecouplingfunctionω(φ)mayevolvetoalargevalueduringradiationera.Someauthorshavediscussedtheeffectofaninflationary

6

phaseinpushingω(φ)towardstheextremum[3].Consequently,thereisastandardbeliefthatSTtheoriesareindistinguishablefromGRatlateradiationepochandduringmatterdominatedera.Wehaveshownthatthelimitω(φ)→∞doesnotreduceaSTtheorytoGRfortrace-freestressenergy.ButthisisnotsurprisingasthePPNparametersdescribethepossibledeviationsfromGRinthelocalinteractionofmassivebodiesandtheNordtvedtconditionsreduceSTtheoriestoGRonlyintheweakfieldlimit.ItisalreadyknownthattheBrans-DicketheoryalsodoesnotalwaysreducetoGRwhenT=0.ButinthatcasethedependenceoftheBDscalarfieldφonthecouplingconstantessentiallyremainsarbitrary[16]andtheasymptoticbehaviorofφshouldbefixedrespectingMachiannatureoftheBDthe-ory(whichisthemotivationforthedevelopmentofthetheory)whichimmediatelysuggestsφ∼φ0+O

󰀂

1

References

[1]T.DamourandK.Nordtvedt,Phys.Rev.Lett.70,2217(1993);Phys.Rev.D48,3436

(1993);T.DamourandB.Pichon,Phys.Rev.D59,123502(1999).

[2]J.D.BekensteinandA.Meisels,Phys.Rev.D18,4378(1978);P.J.SteinhardtandP.S.

Acctta,Phys.Rev.Lett64,2740(1990);J.D.BarrowandK.Maeda,Nucl.Phys.B341,294(1990).

[3]J.Garcia-BellidoandM.Quiros,Phys.Lett.B243,45(1990).

[4]J.-M.G´erardandI.Mahara,Phys.Lett.B346,35(1995);J.Garcia-BellidoandD.

Wands,Phys.Rev.D52,5636(1996).

[5]A.SernaandJ.M.Alimi,Phys.Rev.D53,3074(1996);ibid53,3087(1996).[6]C.H.BransandR.H.Dicke,Phys.Rev.124,925(1961).

[7]B.Green,J.M.SchwarzandE.Witten,SuperstringTheory(CambridgeUniversityPress,

Cambridge,1987).

[8]P.G.O.Freund,Nucl.Phys.B209,146(1982);Y.M.Cho,Phys.Rev.Lett.68,3133(1992).[9]D.LaandP.J.Steinhardt,Phys.Rev.Lett.62,376(1989);P.J.SteinhardtandF.S.Accetta,

ibid.64,2740(1990)

[10]S.Perlmutter,G.Aldering,M.DellaValleetal.,Nature391,51(1998);P.M.Ganavich,

R.P.Kirshner,P.Challisetal.,AstroPhys.J.Lett.493,L53(1998)

[11]B.Boisseau,G.Esposito-Farese,D.Polarski,andA.A.Starobinsky,Phys.Rev.Lett.85,2236

(2000)

[12]A.BhadraandK.K.Nandi,inpreparation[13]N.BanerjeeandS.Sen,Phys.Rev.D56,1334(1997).

[14]V.Faraoni,Phys.Rev.D59,084021(1999);Phys.Lett.245,26(1998)[15]C.RomeroandA.Barros,Phys.Lett.A173,243(1993).

8

[16]A.BhadraandK.K.Nandi,Phys.Rev.D64,087501(2001)[17]K.Nordtvedt,AstroPhys.J.161,1059(1970)

[18]P.G.Bergmann,Int.J.Theor.Phys.1,25(1968);R.V.Wagoner,Phys.Rev.D1,3209

(1970).

[19]J.D.BarrowandP.Parsons,Phys.Rev.D55,1906(1997)[20]B.M.Barkar,Astrophys.J.219,5(1978)

[21]A.Miyazaki,[gr-qc/0012104],2000;[gr-qc/0101112],2001

9

因篇幅问题不能全部显示,请点此查看更多更全内容