tracelessmatterfield
arXiv:gr-qc/0204014v1 3 Apr 2002A.Bhadra∗
HighEnergyandCosmicRayResearchCentreUniversityofNorthBengal,Siliguri734430INDIA
Abstract
ω(φ)→∞limitofscalartensortheoriesarestudiedfortracelessmattersource.Itisshownthatthelimitω(φ)→∞doesnotreduceascalartensortheorytoGR.AnexactradiationsolutionofscalartensorcosmologyundermodifiedNordtvedtconditionsisobtainedforflatFriedmannuniverse.
PACSnumbers:04.50.+h
I.Introduction
RecentlyDamourandNordtvedt[1]hasbeendemonstratedquitegenerallythatscalarten-sor(ST)theoriesgenericallycontainanaturalattractormechanismtowardgeneralrelativity(GR).Suchapossibilitywasalsosuggestedpreviously[2,3]butonlyforsomeparticularclassesofmodels.ThismeansSTtheoriesarecosmologicallyevolvedtowardastatewithnoscalaradmixturetogravityduringmatterdominatedera[1]orevenduringradiationera[3,4,5].Thisattractorfeatureisimportantbecauseitdiminishesthedoubtontheexistenceofmass-lessscalarfieldwithgravitational-strengthcouplingbyprovidingreasonableexplanationforthesmalleffectofthescalarfields(incomparisonwithcurvatureeffect)inthepresentepochwithoutrequiringanyfine-tunedlargevalueofthecouplingparameterasneededinthecaseofcelebratedBrans-Dicke(BD)theory[6].Itisworthmentioningthatascalarpartnerto
bhadra@yahoo.com
1
gravityisinevitableinmosteffortsatunifyinggravitywiththeotherinteractions,suchassu-perstringtheories[7]orKaluza-Klientheories[8].Incosmologyalso,thescalarfieldisfoundtoplayanappreciablerolebyprovidinganaturalwaytoovercomethefinetuningproblemof”new”inflationarymodelofuniversebyterminatingtheinflationaryerathroughnucleationofbubbles[9].Thepresentaccelerationoftheuniverse,asrevealedfromtheobservationaldataofthetype1asupernova[10],alsocanbeaccommodatewiththescalarfieldcoupledgravitytheorieswithouttheneedofanynewkindofmatterfield(socalled”Quintessencematter”)havingapositiveenergydensitybutanegativepressure[11,12].
TheattractormechanismisbasedontheideathataSTtheoryconvergestoGRforcertainvaluesofthecharacteristiccouplingparameterω(φ),whichrepresentsthestrengthofthecou-plingbetweenthescalarfieldandthecurvature.Duringcosmologicalevolution,theEinstein
˜)tendstozero[1]orequivalentlyinJordanframeω(φ)→∞framecouplingparameterα(φ
1˜)≡(α2(φ
Jordanframe,weshallworkinthisframethroughoutthepaper),thegeneralformoftheactiondescribingamasslessscalar-tensortheoryofgravityinnaturalunits(G=c=1)is[17,18]
A=
1
−gd4xφR−
ω(φ)
2
gµνR=
8π
φ28π
φ,µφ,ν−
1
φ
(φ,µ;ν−gµν2φ),
(2)
2φ=
2ω(φ)+3
gµνφ,µφ,ν;
(3)
withtheenergymomentumconservationequation
T;µνν=0,
µ
where2≡gµν∇µ∇ν,T=Tµisthetraceofthematterenergymomentumtensorandω′≡
(4)
dω
1−kr2
+r2dΩ2;
(5)
curvatureconstantk=−1,0,+1foranopen,flatorcloseduniverserespectively.Theconditionofhomogeneityimpliesthatthescalarfieldisonlyafunctionofthetimecoordinate,φ≡φ(t).Fortheabovelineelement,theEq.(4)reducesto
ρ˙+3
a˙
whereanoverdotdenotesd/dt.ForaradiationuniversewithequationofstateP=
1
8π
(2)and(3)thusyield
a˙2
φa4
+a˙2+k
φa4−k
Γa−4
(7)
whereΓisapositiveconstant.Γ=0correspondstovacuum(ρ=P=0).Thefieldequations
a˙φ−ω(φ)
φ2
6−2
˙φa−¨φ˙2φ
a
a
˙2ω′(φ)φ˙φ=−
φ
.
III.Non-convergenceofSTtheoriestoGR
Thefirstintegraloftheequation(10)immediatelygives,
˙=φ
A(3+2ω(φ))
(11)
whereAisaconstant.TheaboveequationistrueforanyradiationorvacuumcosmologicalFriedmannsolutionandisvalidforallSTtheories.ItistobenotedthatsinceAisindependentoftime,itcannotbeafunctionofω(φ)butforBrans-Dicketheory(ωisconstant)Amay˙fromEq.(11)intoEqs.(8)and(9)wegetunderthelimitω(φ)→∞dependonω.Insertingφ
a˙2+k
φa4
+
A2
a
+
a˙2+k
φa4
−
A2
ω2(φ)
).(13)
4
andtheRicciscalarinthesamelimitisgivenby
R≃−
1
4ω2(φ)
−1
a6
,
(14)
Whenascalar-tensortheoryconvergestoGR,thescalarcurvaturemustapproachtozeroandatthesametime,thescalarfieldmustbecomeaconstantaswell.ItisevidentfromEq.(11)thatasω(φ)→∞,φistendingtoaconstantvalue(1).AshouldnotvanishinthislimitsinceAisindependentofω(φ).a(t)mustbeboundedforanyrealistictheoryofgravity.ThenitfollowsfromEq.(14)thatRisnotapproachingitsGRvalue(0)forlargevalueofω(φ)orevenfortheNordtvedtconditions[17]viz.ω(φ)→∞,
ω′(φ)
ω2(φ)
→0(15)
Butevenforsuchmodifiedconditions,Rremainsnon-zeroandthefieldequationsareclearlydifferentfromthecorrespondingGRequationswiththesameenergymomentumtensor.ThisshowsthatGRcannotberecoveredfromSTtheoriesbyimposingconstraintsonthecouplingparameterω(φ).
IV.Radiationsolution
Toobtainsolutionofthesimultaneousequations(12)and(13)undermodifiedNordtvedtconditions,wefirstwritetheseequationsinthesynchronousgauge
a+ka=Γ+
′2
2
A2
4a2
5
(17)
whereprimedenotesd/dηandtheconformaltimeηisdefinedthrough
adη=dt
Forflatuniverse(k=0),solutionof(16)and(17)is
a(η)=
(18)
A
η+Γη23
1/2
;(19)
andthecosmictime(t)isrelatedwiththeconformaltime(η)viat=
adη=
ηA+3Γ
√
12Γ3/2
Log2
3√
φ0
)−α;α>0,B1>0constants.ThetheoryreducestoBarker’s“constant”Gtheory
[20]forα=1andB1=−1/2andtoBrans-Dicketheory[6]forα=0.Thetheoryhasbeenstudiedextensivelyin[3,5,19].Theexactradiationsolutionsforα=1isgivenby[19]
φ(η)=
4φ0Kληλ(η+2η0)λ
φ(η)
(22)
whereλ=(3/2B1)1/2,andKandη0areconstants.Asω(φ)→∞,scalarfieldapproachesφ0andtheexpressionforscalefactor(22)indeedconvergesto(19).ItisclearfromEqs.(19)and(20)thatforlargeη,t→large,thescalefactordiffersfromthatofGR.
√2
η2anda∝t1/2i.e.,thesolution
approachestheusualradiationdominatedFriedmannmodelofGR.Butwhentisnotvery
V.Conclusion
Theevolutionofscalarfieldsuggests[3,4,5]thatthecouplingfunctionω(φ)mayevolvetoalargevalueduringradiationera.Someauthorshavediscussedtheeffectofaninflationary
6
phaseinpushingω(φ)towardstheextremum[3].Consequently,thereisastandardbeliefthatSTtheoriesareindistinguishablefromGRatlateradiationepochandduringmatterdominatedera.Wehaveshownthatthelimitω(φ)→∞doesnotreduceaSTtheorytoGRfortrace-freestressenergy.ButthisisnotsurprisingasthePPNparametersdescribethepossibledeviationsfromGRinthelocalinteractionofmassivebodiesandtheNordtvedtconditionsreduceSTtheoriestoGRonlyintheweakfieldlimit.ItisalreadyknownthattheBrans-DicketheoryalsodoesnotalwaysreducetoGRwhenT=0.ButinthatcasethedependenceoftheBDscalarfieldφonthecouplingconstantessentiallyremainsarbitrary[16]andtheasymptoticbehaviorofφshouldbefixedrespectingMachiannatureoftheBDthe-ory(whichisthemotivationforthedevelopmentofthetheory)whichimmediatelysuggestsφ∼φ0+O
1
References
[1]T.DamourandK.Nordtvedt,Phys.Rev.Lett.70,2217(1993);Phys.Rev.D48,3436
(1993);T.DamourandB.Pichon,Phys.Rev.D59,123502(1999).
[2]J.D.BekensteinandA.Meisels,Phys.Rev.D18,4378(1978);P.J.SteinhardtandP.S.
Acctta,Phys.Rev.Lett64,2740(1990);J.D.BarrowandK.Maeda,Nucl.Phys.B341,294(1990).
[3]J.Garcia-BellidoandM.Quiros,Phys.Lett.B243,45(1990).
[4]J.-M.G´erardandI.Mahara,Phys.Lett.B346,35(1995);J.Garcia-BellidoandD.
Wands,Phys.Rev.D52,5636(1996).
[5]A.SernaandJ.M.Alimi,Phys.Rev.D53,3074(1996);ibid53,3087(1996).[6]C.H.BransandR.H.Dicke,Phys.Rev.124,925(1961).
[7]B.Green,J.M.SchwarzandE.Witten,SuperstringTheory(CambridgeUniversityPress,
Cambridge,1987).
[8]P.G.O.Freund,Nucl.Phys.B209,146(1982);Y.M.Cho,Phys.Rev.Lett.68,3133(1992).[9]D.LaandP.J.Steinhardt,Phys.Rev.Lett.62,376(1989);P.J.SteinhardtandF.S.Accetta,
ibid.64,2740(1990)
[10]S.Perlmutter,G.Aldering,M.DellaValleetal.,Nature391,51(1998);P.M.Ganavich,
R.P.Kirshner,P.Challisetal.,AstroPhys.J.Lett.493,L53(1998)
[11]B.Boisseau,G.Esposito-Farese,D.Polarski,andA.A.Starobinsky,Phys.Rev.Lett.85,2236
(2000)
[12]A.BhadraandK.K.Nandi,inpreparation[13]N.BanerjeeandS.Sen,Phys.Rev.D56,1334(1997).
[14]V.Faraoni,Phys.Rev.D59,084021(1999);Phys.Lett.245,26(1998)[15]C.RomeroandA.Barros,Phys.Lett.A173,243(1993).
8
[16]A.BhadraandK.K.Nandi,Phys.Rev.D64,087501(2001)[17]K.Nordtvedt,AstroPhys.J.161,1059(1970)
[18]P.G.Bergmann,Int.J.Theor.Phys.1,25(1968);R.V.Wagoner,Phys.Rev.D1,3209
(1970).
[19]J.D.BarrowandP.Parsons,Phys.Rev.D55,1906(1997)[20]B.M.Barkar,Astrophys.J.219,5(1978)
[21]A.Miyazaki,[gr-qc/0012104],2000;[gr-qc/0101112],2001
9
因篇幅问题不能全部显示,请点此查看更多更全内容