您的当前位置:首页正文

下垂控制方法的多终端VSC- HVDC电网动态分析海上风电场

2024-04-14 来源:汇智旅游网
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEETRANSACTIONSONPOWERDELIVERY

1

MethodologyforDroopControlDynamicAnalysisofMultiterminalVSC-HVDC

GridsforOffshoreWindFarms

EduardoPrieto-Araujo,FernandoD.Bianchi,AdriàJunyent-Ferré,StudentMember,IEEE,and

OriolGomis-Bellmunt,Member,IEEE

Abstract—Thispaperaddressesthecontrolofmultiterminalvoltage-sourceconvertersathigh-voltagedirectcurrentinthecontextofoffshorewindfarms.Droopcontroliscommonlyusedtoregulatethedcvoltageinthiskindofgrid,anddroopparametersareselectedonthebasisofsteady-stateanalyses.Here,acontroldesignmethodologyisproposedbasedonthefrequency-responseanalysis.Thismethodologyprovidesacriteriontoselectthedroopgains,takingintoaccounttheperformancespecifications[i.e.,thedesiredvoltageerrorsandthemaximumcontrolinputs(currents)].Theapplicationofthemethodologyisillustratedwithafour-terminalgrid.

IndexTerms—Droopcontrol,high-voltagedirectcurrent(HVDC),multiterminal,offshorewindpower.

I.INTRODUCTION

HESEDAYS,thereisanincreasingnumberofoffshorewindfarms.Intheseoffshorefacilities,turbinescanbelocatedtensorhundredsofkilometersawayfromthecoastandconnectedtothemainpowergridbysubmarinecables.Inthesesituations,studieshaveprovedthatthemostconvenientpowertransmissionsystemsarethehigh-voltagedirect-current(HVDC)networks[1].Thesegridsconsistoftwoormorecon-vertersconnectedtoacommondcgrid[2].Themostcommontechnologyinthelastyearshasbeentheline-commutedcon-verters(LCCs)[3].However,thereisagrowingtrendtowardtheuseofvoltage-sourceconverters(VSCs)inoffshoreHVDCgrids[1],[4],[5].Thesepowerconvertersoffermorepossibili-tiesfortheoperationoftheoffshorewindfarms.VSC-HVDCs

ManuscriptreceivedOctober22,2010;revisedFebruary21,2011;acceptedApril10,2011ThisworkwassupportedbytheMinisteriodeCienciaeInno-vaciónunderProjectENE2009-08555.Paperno.TPWRD-00807-2010.

E.Prieto-AraujoandA.Junyent-FerréarewiththeDepartamentd’Enginy-eriaElèctrica,Centred’InnovacióTecnològicaenConvertidorsEstàticsiAc-cionaments(CITCEA-UPC),UniversitatPolitècnicadeCatalunya.ETSd’En-ginyeriaIndustrialdeBarcelona,BarcelonaPl.2.08028,Spain(e-mail:ed-uardo.prieto-araujo@citcea.upc.edu).

F.D.BianchiandarewiththePowerElectronicsandElectricPowerGridsDepartment,CataloniaInstituteforEnergyResearch(IREC),Barcelona08019,Spain.

O.Gomis-BellmuntiswithDepartamentd’EnginyeriaElèctrica,Centred’In-novacióTecnològicaenConvertidorsEstàticsiAccionaments(CITCEA-UPC),UniversitatPolitècnicadeCatalunya.ETSd’EnginyeriaIndustrialdeBarcelona,BarcelonaPl.2.08028,Spain.HeisalsowiththePowerElectronicsandElec-tricPowerGridsDepartment,CataloniaInstituteforEnergyResearch(IREC),Barcelona08019,Spain

DigitalObjectIdentifier10.1109/TPWRD.2011.2144625

T

permittheindependentcontrolofactiveandreactivepowerandcontinuousacvoltageregulation.Theypresentnocommutationfailure,black-startcapability,andthereisnoneedforvoltagepolarityreversaltoreversepower.Asadditionaladvantages,thefiltersaremorecompactandthecablesarelighter[6],[7].Ontheotherhand,thecostsandthecommutationlossesarehigherandtheyareabletohandleonlylimitedlevelsofvoltageandpower.ThefirstHVDCusingVSCtechnologyinwindfarms,calledBorWin1,wascommissionedin2010inGermany.Atotalof80windturbinesof5MWeachareconnectedbya75-kmun-dergroundcableand125-kmsubmarinecableat150kV[8].Inthenearfuture,therewillbealargeamountofoffshorewindfarmsconnectedwithVSC-HVDC.ItseemsreasonabletodeviseoffshoreVSC-HVDCgridsinterfacinganumberofsuchdifferentterminalswithdifferentacgrids,resultingintheso-calledmultiterminalVSC-HVDCsystem.MultiterminalVSC-HVDCstandsasaninterestingsolutiontoefficientlyconnectanumberofoffshorewindfarms,butalsoimpliesseveraltechnicalchallengesthatwillhavetobeaddressed,includingcontrol[9],operation[7],andprotection[6]issues.ThefirstmultiterminalusingLCC-HVDCtechnologygoesbacktothe1960s[10],[11].Itwasnotuntil2003thattheuseofthemultiterminalVSC-HVDCintheaggregationofoffshorewindpowerwasproposedby[12].Adetailedanalysisofdifferentsystemtopologiescanbefoundin[6].ImportantprojectsinvolvingHVDCmultiterminaltransmissionarecur-rentlyunderstudy,suchastheDesertecproject[13]andtheEuropeanoffshoreSupergrid[14].

Thestabilityofacpowersystemshasbeenwidelydiscussedintheliterature;see,forexample,[15]and[16].ThesestudiesalsoincludeHVDCsystemsandtheirpossiblecontributiontoimproveacsystemstability.Somedcgrid-managementstrate-giesbasedoncoordinatedclosed-loopdcvoltagecontrolanddcdroopcharacteristicswereproposedandsimulatedin[17].Liangetal.[9]addressedthemodelingandsimulationofmul-titerminalVSC-HVDCtransmissionsforoffshorewindpower.However,tothebestofourknowledge,thereisnostabilityanal-ysisnorsystematiccontroldesignprocedureformultiterminalVSC-HVDCgridsconnectingoffshorewindfarmstoacsys-tems.Thispaperinvestigatesthestabilityandthedynamicbe-haviorofmultiterminalHVDCgridsinoffshorewindfarmsap-plications.Adesignmethodologyofproportionalcontrolofthedcvoltagebasedonfrequency-responseanalysisisproposed.Thispaperisorganizedasfollows.ThenextsectionprovidesabriefdiscussionofthecontrolofVSC-HVDCmultiterminal

0885-8977/$26.00©2011IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2

Fig.1.TypicalHVDCmultiterminalnetwork.

networks.SectionIIIpresentsthemaincontribution,amodel-lingprocedureforcomplexVSC-HVDCmultiterminalsystems,andamethodologyfortheselectionofthedroopconstant.Theapplicationoftheproposedprocedureisillustratedinthecaseofafour-terminalgridinSectionIV.Finally,inSectionV,someconcludingremarksaredrawn.

II.MULTITERMINALGRIDCONTROL

Fig.1illustratesatypicalmultiterminalHVDCnetwork.Itconsistsofthedcgrid,themainacgrid(oracgrids),thewindfarmgrids,thewindfarmconverters(WFCs),andtheacgrid-sideconverters(GSCs).ThemultiterminalHVDCnetworkpermitsthetransferofpoweramongthedifferentunits,wheretheWFCsactaspowersourcesandtheGSCasloads.Inthispowertransmissionscheme,thesourcesinjectalloftheavailablepowerintothegridwhereasthecontroloftheGSCsseekstomaintainthedcvoltage.ThisalsoincludespowersharingamongthedifferentGSCs.Thenormaloperationmaybealteredwhensomeoftheconvertersreachthecurrentlimits.Thisusuallyoccursduringseverevoltagefaultsintheacgrid.Underthesecircumstances,theWFCsenterinvoltageregulationmodeandtheGSCsextractthemaximumpowerpossiblewithoutregulatingthedcvoltage.Inbothoperationmodes,someconvertersseektomaintainthedcvoltageandtheothersinjectorextractpowerwithoutcontrollingthevoltage[7].

Toregulatethedcvoltage,theso-calleddroopcontrolisem-ployed,whichisatechniquethatenablesthepowerdistributionamongdifferentterminalswithoutcommunications.Thecontrolofeachconverterisusuallyimplementedintwolevels:aninnerloopcontrollingthecurrentsandanouterloopregulatingthedcvoltage.Thedroopcontrolactsontheouterloopimposingacurrentreferencetotheinnerloop.Thecurrentand,thus,thepowerintheconverteraredirectlygovernedbythecurrentcontrolinaccordancewiththereferenceimposedbythevoltageloop.ThiscontrolschemeisshowninFig.2.Thecontrollawisgivenbythefollowingexpression:

(1)

whereisthedcvoltage,

isthereference,andisthedroopgain.Forthepresentstudy,thedynamicsofthecurrent

IEEETRANSACTIONSONPOWERDELIVERY

Fig.2.DroopcontrolschemeofaVSC.

loopcanbeconsideredmuchfasterthantheouterloop.There-fore,thedccurrentflowingthroughtheconverterwillbeas-sumedtobeequaltothereference.Theselectionofthegainforeachconvertermustbedone,takingintoaccounttheentiremultiterminalbehavior.Inadditiontothestaticconsiderationassociatedwiththedistri-butionofthepowersourcesandsinks,eachlocalcontrollercanaffecttheglobalstabilityandthedcvoltageinanotherter-minal.Forthesereasons,thedroopconstantselectionmustbeaddressedinthecontextofmultivariablesystemtheory.

III.FREQUENCY-RESPONSEANALYSISFOR

DROOPGAINSELECTION

Inthissection,amethodologyforthedroopconstantselec-tionbasedonmultivariablefrequency-responseanalysisispre-sented.Previoustoproposingthismethodology,asystematicprocedureisintroducedtoobtainalinearrepresentationofcom-plexmultiterminalHVDCnetworks.A.MultiterminalHVDCNetworksModeling

Fromtheviewpointofadcgridanalysis,themultiterminalcanberepresentedastheinterconnectionofnodesandbranches.AnexampleofthisrepresentationisshowninFig.3.TheWFCsinjectingpowerintothegridarethepower-inputnodesandtheGSCs.Thepoweroutputnodesextractpowerfromthegrid.Thecablesinterconnectingthenodesarethebranches.Therearealsonodeswhereonlycablesconverge,thosearecalledtheintermediatenodes.ThegeneralmultiterminalsetupdepictedinFig.3consistsofpower-inputnodes,power-outputnodes,andintermediateconnectionnodes,andbranches.Thislastnumberdependsontheparticularinterconnectionpattern.Next,themodelingofeachtypeofnodeisbrieflyexplained.

InputandOutputPowerNodes:ThewindfarmsandtheacsystemsareconnectedtotheHVDCgridthroughHVDCpowerconverters.Forthepresentanalysis,itissufficienttoconsidertheaveragedynamicbehavior.Inthissituation,theacsideoftheconvertersaremodeledasthreevoltagesourcesandthedcsideasacurrentsourceandacapacitor[18].Usingthissimplifiedrepresentation,eachwindfarmandeachacsystemaremodeledasdccurrentsources,asillustratedinFig.4.Attheconverterdcside,thepowerflowinthenodeisrepresentedbyacurrentcomingfromasourceofvalue

(2)

where

istheincomingpowerandisthedcvoltageatthenode.Itwillbeassumedthatthevoltageremainscloseto

thenominalvalues

.Underthisassumption,thecurrentcanbeassumedproportionaltothepower.

Branches:Thecablesbetweennodesaremodeledby-equivalentcircuits,seeFig.5.Whenthesecircuitsconverge

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PRIETO-ARAUJOetal.:METHODOLOGYFORDROOPCONTROLDYNAMICANALYSIS

3

Fig.3.NodeandbranchschemeofamultiterminalHVDCnetwork.

Fig.4.Equivalentrepresentationofthewindfarmandtheacgridconvertersfordcgridanalysis.

Fig.5.󰀀-circuitmodelingabranchelement.

toinputoroutputnodesandtoother-circuits,thereareseveralcapacitorsinparallel.Inthesecircumstancesandwiththeaimofkeepingthenumberofvariablesasminimumaspossible,thetotalcapacitancescanbereducedtoanequivalentonegivenby

(3)

IntermediateNodes:Thecablesinthedcgridmayjointwoormoreterminalsatintermediatepoints.Thesenodeswillbedenotedasintermediatenodes,thenodemarkedwithin

Fig.3isanexampleofthistypeofnode.Again,thenumberofcapacitancescanbereducedbyreplacingthecapacitancesofthe-equivalentcircuitsandtheinputandoutputnodesbyatotalcapacitancesgivenby(3).

Anequivalentcircuitcanbeobtainedfromtheinterconnec-tionofthenodesandbranchesaftertheaforementionedsimpli-fications.Then,usingcircuitslawsandaftersomevariablema-nipulations,itispossibletofindasetoffirst-orderdifferentialequationsdescribingthedynamicbehavioroftheentiremulti-terminalHVDCgrid.Thesedifferentialequationsareknownasthestate-spacerepresentationandcanbeexpressedinthefol-lowingcompactform:

(4)

whereisthestatevector,

andaretheinputs,andaretheoutputs,and,andarematricesofsuitabledimensions.Thesematricesareobtainedafterarrangingthevariablesandapplyingmatrixcomputationlaws.

Thestatevectorconsistsofinternalvariablesthatcharac-terizetheentirestateofthesystem.Inanelectricalsystem,thecurrentsintheinductorsandthevoltagesinthecapacitorsarecommonlyselectedasstates.Therefore,inthecaseofthemul-titerminalHVDCnetworkinFig.3,thestatevectorisgivenby

Eachnodehasonecapacitorandeachbranchhasoneinductor;

therefore,thetotalnumberofstatesis

.Theinputsaredividedintotwovectors,thevectorgathersthevariablesthatcanbeusedtocontrolthesystemandaredisturbances(i.e.,externalvariablesthatarenotpossibletoma-nipulate).InthecaseofthemultiterminalHVDCnetworks,theinputsofthesystemarethecurrentinjectedorextractedbytheconverters,therefore

wherecorrespondstothesetofindicesofthenodeswhere

theconvertersinjectorextractpowerwithoutvoltagecontrol

and

denotesthesetofindicesofthenodeswherethedroopcontrolisapplied.Noticethattherelationmustbeheld.

Similarly,theoutputispartitionedintotwovectors.Thevectorcontainsthevariablesthatcanbeusedinthecontrolofthedcvoltage.Ontheotherhand,standsforthevectorofvariablesthatarenotavailabletobeusedbythecontroller.InthemultiterminalHVDCscheme,thecontrollerscanonlyusetheinformationprovidedbythevoltageatthenodeswheredroopcontrolisapplied.Theremainingvoltagesmustalsobemaintainedclosetotheratedvaluesbuttheycannotbefedbacktothecontrollers.Hence

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4

Thetransfermatrixofthesystem

(5)

isobtainedfromthestate-space(4),where

Thetransfersmatricesandrelatethecurrentsimposedbythecontrollerwiththecontrolledandnondirectlycontrolled

voltages,respectively,whereasthetransfermatrices

andconnectthecurrentnotusedinthecontrolwiththecon-trolledandnondirectlycontrolledvoltages,respectively.B.DroopGainSelection

Inamultiterminalscheme,thedistanceamongconvertersisusuallylargeandthecommunicationsarenotreliableenoughtobeusedinthedcvoltagecontrol.Asaconsequence,eachcon-trollermustcomputethecontrolvariablesfromtheinformationprovidedbythevoltageattheownnode.Inmatrixterms,themultivariablecontrollerhasanexpressionoftheform

..

.

..

.

(6)

where

isascalarparametertobedeterminedandarethe

constantsobtainedfromasteady-statestudy[17].Theseconstantsareassociatedwiththeresistancevaluesofthelineandtheamountofpowerincomingoroutgoingfromeachterminal.Theseconstantsarepositiveinthecaseofpower-outputnodesandnegativeinthecaseofpower-inputnodes.

ThedroopcontrolschemeisdepictedinFig.6.Itcanbeob-servedthatonlythevariableisfedbackintothecontroller.Theobjectiveofthedroopcontrolistomaintainthedcvoltagewithindesiredlimitswhenthesystemisdisturbedbythevaryingcurrentsofthenodeswithoutvoltagecontrol.Thecontrolinputmustalsobekeptunderthelimitsimposedbythemaximumcurrentsintheconverters.Therefore,theselectionofthegain

musttakeintoaccounttheseperformancespecificationsbe-sidesguaranteeingclosed-loopstability.FromFig.6,itiseasytoprovethatthevariablesofinterestaregivenbythefollowingexpressions:

(7)(8)(9)

IEEETRANSACTIONSONPOWERDELIVERY

Fig.6.Droopcontrolschemeinamultiterminalgrid.

whereand

arethesensitivitytransferfunctionwiththeidentitymatrixofdimension.

Theeffectofthegain

onthestabilitycanbeanalyzedbycomputingtheeigenvaluesoftheclosed-loopmatrix

.Re-placing

inthestatespace(4),theclosed-loopmatrixisgivenby.Then,forclosed-loop

stability,thegain

mustensurethatalleigenvaluesofhavenegativerealpart.Asimplepoweranalysisrevealsthatthe

closed-loopsystemisstableforany

.Infact,sincethecontrollawmakesthecurrent(with)proportional

tothevoltage

atthesamenode,thegaincanbein-terpretedasapassiveadmittance.Thatis,thedroopcontrolissimilartoaddenergydissipationtothesystemand,therefore,

theclosed-loopsystemwillbealwaysstablefor

.Therelationbetweenthegain

andtheperformanceob-jectivescanbeanalyzedwiththehelpofthefrequencyresponseofthesystem.Thisanalysisconsistsinevaluatingthetransfer

functionin

andinanalyzingthesingularvaluesoftheresultingcomplexmatrixfunctionsof.Thesingularvalues

ofthefrequencyresponseof

aredenotedaswheredenotesthetheigenvalueofthematrix.Thesin-gularvaluesprovideinformationabouthowavectorofsinu-soidalsignalsoffrequencyisalteredbythesystem.Inmulti-inputmultioutputlinearsystems,avectorofsinusoidalsignalssuffersnotonlyachangeinitsmagnitudeandphase,butalsoachangeinitsdirection.Themaximumamplificationthatthevectorcanexperienceisgivenbythemaximumsingularvalue

andtheminimumamplificationbytheminimumsin-gularvalue

.Thisanalysiscanbeinterpretedastheextensionofthepopularsingle-inputsingle-outputfrequencyresponseanalysistomultivariablesystems.Here,themagnitudeofthefrequencyresponseisreplacedbythesingularvalues(see[19]foramoredetailedexplanation).

Theperformancespecificationsaretominimizetheeffectofthedisturbancesonthedcvoltagesandtomaintainthecontrolinputunderreasonablelimits.Thesespecificationscanbeex-pressedintermsofthesingularvaluesinordertodeterminethe

constraintson

.Forexample,themaximumenergyoftheerrorcausedbyanyinputofboundedenergyisgivenby

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PRIETO-ARAUJOetal.:METHODOLOGYFORDROOPCONTROLDYNAMICANALYSIS

5

Fig.7.Four-terminalgridusedtoillustratethedroopconstantselectionmethodology.

wheredenotesthe2-normof.Therefore,tominimizetheeffectsofthedisturbanceonthevoltageerrorandon,canbeinterpretedasminimizing

andtomaintainthecontrolinputunderreasonablelimitscanbeexpressedasensuringthat

isboundedinthefrequenciesofinterest.Ingeneral,largevaluesofachieveasmallervoltageerror

butmayalsodemandlargecontrolinputs.Theoptimal

isacompromiseamongalloftheseobjectives.

IV.FOUR-TERMINALGRIDEXAMPLE

Asimplefour-terminalHVDCgridisusedtoillustratethedroopselectionmethodologypresentedinprevioussections.Thefour-terminalgridisdepictedinFig.7andconsistsoftwooffshorewindfarmconvertersWFC1andWFC2andtwoonshoregrid-sideconvertersGSC1andGSC2.ThevaluesoftheparametersarelistedinTableI.Thefour-terminalHVDCgridhastwopower-inputnodes,twopower-outputnodes,andthreebranchesrepresentingthecableslinkingtheconverters.Thecapacitorsaretheresultofcombiningthecapacitancesofthenodesandthecorrespondingbranchside,asexplainedinSectionIII-A.

Twoscenariosareanalyzed.Inthefirstcase,droopcontrolisappliedtobothgrid-sideconverterswhereasthewindfarmcon-vertersinjectallofthewindpoweravailable.Inthesecondsce-nario,duetoafaultintheacgrid,bothwindfarmconvertersreg-ulatethedcvoltages,andthegrid-sideconvertersextractpowerfromtheHVDCgridattheirmaximumcapacity.

TABLEI

PARAMETEROFTHEFOUR-TERMINALEXAMPLE

A.Case1:DroopControlintheACGridSide

Applyingcircuitlawstothefour-terminalgridinFig.7,thefollowingdifferentialequationscanbeobtained:

(10)(11)(12)

(13)(14)

andthefollowingalgebraicequations:

(15)(16)(17)(18)

Therearefourcapacitorsandthreeinductors;therefore,thevari-ables,andaresufficienttocom-pletelydefinethestateofthissystem,i.e.,

AstheWFCsinjectallavailablepowerintothegridandtheGSCsareregulatingthedcvoltages,theinputandoutputresultdividesinto

Thepurposeofthedroopcontrolappliedtotherightsideofthefour-terminalgridinFig.7istomaintainthedcvoltagestabilitywhenthecurrentscomingfromthewindfarmconvertersWFC1andWFC2change.Therefore,thevectorofthesecurrentsisthe

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6

Fig.8.Eigenvaluesoftheclosed-loopmatrixA

forseveralvaluesofK

(Case1).

disturbanceandthecontrolinputisthevectorofthecurrentsoftheGSCsand.Thevoltagesmeasuredandfedbacktothecontrollerarethevoltagesandwhereasthevoltagesandarenotavailableforthecontrollerbutaredesirabletomaintainthemclosetotheratedvalue.

Afterthepreviousdefinitions,substitutingthecurrentsinthecapacitorsin(10)–(11)bytherelations(15)–(18)andreorga-nizingthedifferentialequations,thematricesinthestate-spacerepresentation(4)result

Thedroopcontrollerinthecaseoftwoinputsandtwooutputsissimply

Theconstantsandhavebeensetin1becauseallofthelinesareofthesamelongitudeanditisdesirabletoextractthesameamountofpowerfromeachterminal.

IEEETRANSACTIONSONPOWERDELIVERY

InFig.8,theeigenvaluesoftheclosed-loopmatrix

canbefoundforseveralvaluesofgain

.Noticethattherealpartsoftheeigenvaluesbecomemorenegativeforhighervaluesofgain.Thisstabilizingeffectisinaccordancewiththefactthatanincrementinthedroopconstantissimilartoincrementingtheenergydissipationinthesystem.

AsmentionedinSectionIII-B,thedroopconstantisselectedinaccordancewithaperformancecriterionmeasuredintermsofthe2-normofthevoltageerrorofthevoltagenotmeasuredandofthecontrolinput.

Thevoltageerrorisgivenby(7),whereweareinterestedin

theparticularinput

.Inthissituation,thetransfer

hasatransmissionzeroat0forthepartic-ulardirectionof

(e.g.,for1)Thisalsoholdsforanyothervalueof.Asaconsequence,

thevoltageerrorreducesto

(19)

ThesingularvaluesofcanbeseeninFig.9.Itis

clearthatthelargerthe

is,thesmallertheerror.Inparticular,at

0andforthemaximumvoltageerrorof10%(kV)andtheratedcurrent667A

ThisconstraintcanbeextendedtotheremainingfrequenciesresultingintheshadowareainFig.9.Theconstraintontheerrorisrelaxedinhighfrequenciessinceitisimpossibletosatisfyauniformlimitwithoutviolatingthebandwidthlimitationsofthe

converters.Thetransferfunctions

ofwhichtheirsingularvaluesareinsidetheshadowareainFig.9satisfytheerrorconstraints.Inacaseofa22transfermatrix,itisnotpossibletofindthat

therefore,.Inmoregeneralcases,thelimitonthegaincanbefoundnumerically.

Theeffectof

ontheoutputisgivenby(8).Theobjectiveistomaintainthedcvoltageinthenondirectlycontrolledter-minalvoltageclosetoaratedvalue.Again,theparticularinput

isconsidered.Forthisparticularinput,

theoutputof

isindependentofandresultsareequaltotheinput,i.e.,

Therefore,itispossibletoanalyzethedeviationfromtheratedvaluebydefining

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PRIETO-ARAUJOetal.:METHODOLOGYFORDROOPCONTROLDYNAMICANALYSIS

7

Fig.9.MaximumsingularvaluesofthefunctionS(s)G(s)forseveralvaluesofK(Case1).Thesingularvaluesinsidetheshadowareasatisfytheerrorconstraint.

Fig.10.MaximumsingularvaluesofthefunctionG(s)+Ginside(sthe)KSshadow(s)Garea(s)satisfyforseveraltheconstraintvaluesofonKe(Case.

1).ThesingularvaluesFig.10showthesingularvaluesofthistransferfunction.It

canbeobservedthatforhighervaluesof

,themaximumsingularvaluesof

becomesmallerinlowfrequencies.However,inhighfrequencies,as

Fig.10shows,anincrementof

mayproducetheoppositeeffectincertaincases.Itcanbeseenthatfor

,thesingularvaluesareinsidetheshadowareaandfulfilledthecon-straintsonthevariable.Inparticular,at

0and1/22.5,thevoltageinthewindfarmnodesresult

thatis,a10%errorinthevoltage.

Thecontrolinputisgivenby(9).Again,sincewearein-terestedintheparticularinput

,thissignalresultsgovernedbythetransfer

.Fig.11showsthemaximumsingularvaluesofforsev-eralvaluesof.Theshadowareaindicatesthesingularvalues

thatsatisfytheperformancespecifications.Noticethatthecon-straintdecreasesinhighfrequenciestoconsiderthelimitsonthebandwidthoftheconverters.Itcanbeobservedthatthelow-frequencycomponentsofthecontrolinputareindependent

ofthevalueof

.However,inhighfrequencies,thistransferpresentsresonancepeaksthatforsomevaluesof

,violatetheconstraintsindicatedbytheshadowarea.Thisconstraintim-posesanupperlimitonthegain

.Inparticular,fromFig.11,itcanbeconcludedthat

fulfilstheconstraintonthecontrolinput.

Fromthepreviousanalysis,itcanbeconcludedthatthegainbettersuitstheperformancespecificationsis.

Inordertoevaluatethedroopgainpreviouslyselected,simu-lationswerecarriedoutinMatlab–Simulink.Theanalyzedsce-nariocorrespondstotwosimultaneousandequalchangesinthepowerinjectedintothedcgridbytheWFCs.Thepowersin-jectedbythetwoconverterschangefrom0MWtotheratedvalueat0.05sandreturnto0MWat0.20s.Fig.12(a)showsthepowerflowateachconverter.ThesolidlinescorrespondtothepowerinjectedbytheWFCsandthedashedlinestothepowerextractedbytheGSCs.Itcanbeobservedthatthepoweron-goingfromtheGSCsisalmostcoincidentduetotheselection

ofthepowerdistributionfactors

.Asaconse-quence,bothGSCsextractapproximatelythesameamountofpower.Thepowerlossesofthedcgrid,atratedpowertransmis-sion,arearound375kW.TheevolutionoftheterminalvoltagescanbeseeninFig.12(b).Thedcvoltagesremainat145kVduringtheperiodwherethepowerflowiszerosincethereisnovoltagedropinthegridresistances.Oncethepowerinputincreases,thedcvoltagesmovetowardanewvoltageequilib-rium.Noticethatduringnonzeropowerflow,therearediffer-encesbetweenthevoltageatthewindfarmterminalsandthevoltagesinthegrid-sideterminalsduetothepower-flowdirec-tion.Fig.12(c)showsthecurrentsflowingthrougheachVSC.Bothpowerandcurrentevolutionsaresimilar,exceptforascalefactor,whichindicatesthattheinitialapproximationofconsid-eringthecurrentproportionaltothepowerhasbeenreasonable.Itcanalsobeobservedthatthecurrentsneverexceedthecon-verterlimits.

B.Case2:DroopControlintheWindFarmSide

Inthesecondcaseofstudy,itisassumedthatasimultaneousfaultinbothacgridsforcestheGSCstoenterincurrentlim-itationmode.Inthiscircumstance,theWFCsareresponsibleforregulatingthedcvoltage.Hence,thecontrolinputsarethecurrentsinjectedbytheWFCs,andthedisturbancesarethecur-rentsextractedbytheGSCs,i.e.,

Ontheotherhand,themeasuredvariablesarethewindfarm-sidevoltagesandthenondirectlycontrolledvariablesarethe

gridsidevoltages,i.e.,

Thestatespacemodelhasthesamematrixbuttheinputand

outputmatricesarenowgivenby

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8

Fig.11.MaximumsingularvaluesofthefunctionKS(s)G(s)forseveralvaluesofK(Case1).Thesingularvaluesinsidetheshadowareasatisfytheconstraintonthecontrolinput.

Fig.12.Simulationscorrespondingtoachangeinthepowerinjectedintothegridbythewindfarmconverters(Case1).

Thedroopcontrollerinthecaseis

IEEETRANSACTIONSONPOWERDELIVERY

Fig.13.Eigenvalueoftheclosed-loopmatrixAforseveralvaluesofK

(Case2).

Fig.14.MaximumsingularvaluesofthefunctionS(s)G(s)forseveralvaluesofK(Case2).Thesingularvaluesinsidetheshadowareasatisfytheerrorconstraint.

Fig.15.MaximumsingularvaluesofthefunctionG(s)+Ginside(sthe)KSshadow(s)Garea(s)satisfyforseveraltheconstraintvaluesofonKe(Case.

2).Thesingularvaluessincethedroopcontrolisappliedtothewindfarmside.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PRIETO-ARAUJOetal.:METHODOLOGYFORDROOPCONTROLDYNAMICANALYSIS

9

Fig.16.MaximumsingularvaluesofthefunctionKS(s)G(s)forseveralvaluesofK(Case2).Thesingularvaluesinsidetheshadowareasatisfytheconstraintonthecontrolinput.

Fig.13showstheeigenvaluesoftheclosed-loopmatrixforseveralvaluesofgain.Noticethattherealpartsoftheeigenvaluesbecomemorenegativeforhighervaluesofgain.Alsointhisscenario,thecaseisconsideredwhere

.Therefore,theperformanceis

associatedonlywiththeinput

.InFigs.14and15,themaximumsingularvaluesofthetransfers

,andcanbe

seenforseveralvaluesof.Theresonancepeaksarelighterdampedinthiscase.Forthisreason,inordertofulfilthelowfrequencieserror,largervaluesmustbeacceptedinhighfrequencies.NoticeinFig.16thattheconstraintonthecontrolinputhasbeenrelaxedinthehighfrequencyforthesame

reason.Asaconsequence,thegain

hasbeensetat1/20.Thesystemhasalsobeenevaluatedbysimulations.Inthesce-narioconsidered,bothWFCsinjecttheratedpowervaluewhiletwovoltagesagsareappliedintheacgrid.Athree-phasevoltagesagof10%ofthenominalacvaluesisappliedtotheacgridconnectedtotheGSC1.Atthesametime,anothervoltagesagof20%isappliedtothegridconnectedtotheGSC2.Bothsagslast0.2s.Thethree-phasevoltagesineachacgridareshowninFig.17whereasthecorrespondingthree-phasecurrentscanbeseeninFig.18.

Fig.19presentstheevolutionofthevariablesinthedcgrid.Itcanbeobservedthattheacgridfaultprovokesanincrementofthealldcvoltages[Fig.19(b)].TheseincrementsareduetothefactthattheGSCsoperateincurrentlimitationmodetoavoidthedisconnectionbyovercurrentsduringthegridfault.WhentheWFCsvoltagesexceed160kV,thecorrespondingconvertersstarttoapplydroopcontrolinthedcgrid,reducingthepowerinjectedtothegridfrom100to20MW[Fig.19(a)].Thedcvoltagelimitis164.5kV.ThedccurrentalsodecreasesduringthevoltagesagduetothepowerreductioncausedbythedroopcontrolintheWFCs[Fig.19(c)].Noticethatthedisconnectionofthesystemduetoovervoltagewasavoidedduringthefault.V.CONCLUSION

AdesignmethodologyfordroopcontrolinmultiterminalHVDCgridshasbeenpresented.Themethodologyincludesa

Fig.17.Simulationscorrespondingtoavoltagesagintheacgrids(Case2).(a)Three-phasevoltagesinthegrid1.(b)Three-phasevoltagesinthegrid2.(a)Voltage(inkilovolts).(b)Voltage(inkilovolts).

Fig.18.Simulationscorrespondingtoavoltagesagintheacgrids(Case2).(a)Three-phasecurrentsingrid1.(b)Three-phasecurrentsingrid2.(a)Current(inamperes).(b)Current(inamperes).

Fig.19.Simulationscorrespondingtoavoltagesagintheacgrids(Case2).(a)Power(inmegawatts),(b)voltage(inkilovolts),and(c)current(inamperes).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10

systematicproceduretoformulatealinearmodelofthemul-titerminalgrids.Basedonthismodelandfrequency-responseanalysis,acriterionisprovidedtoselectthedroopgain,takingintoaccountthedynamicsoftheentiremultiterminalHVDCsystem.Thelimitationofdcvoltageerrorsandtheconvertercurrentsdefinesarangeonthedroopgainsthatachieveabettercompromisebetweenthespecifications.Eachlocalcontrollercanaffecttheglobalstabilityandthedcvoltageinotherter-minals.Forthesereasons,thedroopconstantselectionmustbeaddressedinthecontextofmultivariablesystemtheorytoconsiderthedynamicbehavioroftheentiremultiterminalgrid,bothinnormaloperationandinfaultconditions.

Afour-terminalgridexamplehasbeenusedtoillustratetheapplicationoftheuseofthemethodology.Nevertheless,theprocedureisapplicabletoanyothermultiterminalHVDCgridswithmoreinputsandoutputs.Thecomplexityofthemodelin-creaseswiththenumberofnodesandbranchesbutthecom-putationofthesingularvaluesdoesnotinvolveaseriouslimi-tationwiththecurrentalgorithms.Therangeofdroopgainsisobtainedonlyfromthemaximumsingularvalues;therefore,itscomputationisindependentofthecomplexityoftheparticularmultiterminalgrid.

REFERENCES

[1]T.Ackermann,“Transmissionsystemsforoffshorewindfarms,”IEEE

PowerEng.Rev.,vol.22,no.12,pp.23–27,Dec.2002.

[2]J.Reeve,“MultiterminalHVDCpowersystems,”IEEETrans.Power

App.Syst.,vol.PAS99,no.2,pp.729–737,Mar.1980.

[3]J.Arrillaga,“Highvoltagedirectcurrenttransmission,”inInstitutionof

ElectricalEngineers,2nded.London,U.K.:Inst.Elect.Eng.,1998.[4]U.Axelsson,A.Holm,C.Liljegren,M.Aberg,K.Eriksson,andO.

Tollerz,“TheGotlandHVDClightproject-experiencesfromtrialandcommercialoperation,”presentedatthe16thInt.Conf.Exhibit.Con-tributionsElect.Distrib.,Amsterdam,TheNetherlands,Jun.18–21,2001.

[5]J.Dorn,H.Huang,andD.Retzmann,“Anewmultilevelvoltage-sourcedconvertertopologyforHVDCapplications,”presentedattheCIGRESession2008.B4HVDCandPowerElectron.,Paris,France,2008.

[6]O.Gomis-Bellmunt,J.Liang,J.Ekanayake,R.King,andN.Jenkins,

“TopologiesofmultiterminalHVDC-VSCtransmissionforlargeoff-shorewindfarms,”Elect.PowerSyst.Res.,vol.81,no.2,pp.271–281,2011.

[7]O.Gomis-Bellmunt,J.Liang,J.Ekanayake,andN.Jenkins,“Voltage-currentcharacteristicsofmultiterminalHVDC-VSCforoffshorewindfarms,”Elect.PowerSyst.Res.,vol.81,no.2,pp.440–450,2011.[8]ABB.(2010).,Gridconnectionofoffshorewindfarms-Bor-Win1.[On-line].Available:www.abb.com/hvdc

[9]J.Liang,O.Gomis-Bellmunt,J.Ekanayake,andN.Jenkins,“Control

ofmulti-terminalVSC-HVDCtransmissionforoffshorewindpower,”inProc.13thEur.Conf.PowerElectron.Appl.,2009,pp.1–10.

[10]E.Uhlmann,U.Lamm,andP.Danfors,“Someaspectsoftapping

HVDCtransmissionsystems,”DirectCurrent,vol.8,no.5,pp.124–129,1963.

[11]J.ReeveandJ.Arrillaga,“Seriesconnectionofconverterstationsinan

HVDCtransmissionsystem,”DirectCurrent,vol.10,no.2,pp.72–78,1965.

[12]W.LuandB.T.Ooi,“Optimalacquisitionandaggregationofoffshore

windpowerbymultiterminalvoltagesourceHVDC,”IEEETrans.PowerDel.,vol.18,no.1,pp.201–206,Jan.2003.

[13]DesertecFoundation,RedPaper.anOverviewoftheDesertecConcept.

2010.[Online].Available:www.desertec.com

[14]Airtricity,EuropeanOffshoreSupergridProposal.2010.[Online].

Available:www.airtricity.com

[15]P.Kundur,PowerSystemStabilityandControl.NewYork:McGraw-Hill,1994.

[16]J.Machowski,J.Bialek,andJ.Bumby,PowerSystemDynamicsand

Stability.NewYork:Wiley,1997.

IEEETRANSACTIONSONPOWERDELIVERY

[17]L.Xu,L.Yao,andM.Bazargan,“DCgridmanagementofamulti-terminalHVDCtransmissionsystemforlargeoffshorewindfarms,”inProc.Int.Conf.SustainablePowerGenerationandSupply,2009,pp.1–7.

[18]G.Zhang,Z.Xu,andY.Cai,“AnequivalentmodelforsimulatingVSC

basedHVDC,”inProc.IEEE/PowerEng.Soc.Transm.Distrib.Conf.Expo.,2001,vol.1,pp.20–24.

[19]S.SkogestadandI.Postlethwaite,MultivariableFeedbackControl,

AnalysisandDesing.Hoboken,NJ:Wiley,2007.EduardoPrieto-AraujowasborninBarcelona,Spain,in1986.HereceivedtheIndustrialEngi-neeringdegreefromtheUniversitatPolitècnicadeCatalunya,Barcelona,Spain,in2011.

Currently,heiswiththeDepartamentd’Enginy-eriaElèctrica,Centred’InnovacióTecnològicaenConvertidorsEstàticsiAccionaments,UniversitatPolitècnicadeCatalunya.ETSd’EnginyeriaIndus-trialdeBarcelona,Barcelona,Spain.Hisareasofinterestarethemodelingandcontrolofelectricalmachines,powerconverters,andHVDCgrids,

relatedtorenewablegenerationsystems.

FernandoD.BianchireceivedtheB.S.andPh.D.degreesinelectronicengineeringfromtheNationalUniversityofLaPlata(UNLP),Argentina,in1999andin2005,respectively.

From1999to2006,hewasaPh.D.studentandaPostdoctoralFellowattheLaboratoryofIndustrialElectronic,ControlandInstrumentation(LEICI,UNLP,LaPlata,Argentina).From2006to2010,hewasaPostdoctoralResearcherattheTechnicalUniversityofCatalonia,Barcelona,Spain.In2010,hejoinedthePowerElectronicsandElectricPower

GridsGroup,CataloniaInstituteforEnergyResearch(IREC),Barcelona,asaScientificResearcher.Hismainresearchinterestsincluderobustcontrolandlinearparameter-varyingsystemsandtheirapplicationstothecontrolofrenewableenergyconversionsystems.

AdriàJunyent-Ferré(S’09)wasborninBarcelona,Spain,in1982.HereceivedtheIndustrialEngi-neeringdegreefromtheUniversitatPolitècnicadeCatalunya,Barcelona,Spain,in2007,whereheiscurrentlypursuingthePh.D.degreeinelectricalengineering.

Hisareaofinterestisthecontrolofpower-elec-tronicconvertersfortheoperationofrenewablegen-erationsystemsunderdifferentgrid-faultconditions.

OriolGomis-Bellmunt(S’05–M’07)receivedtheIndustrialEngineeringdegreefromtheSchoolofIndustrialEngineeringofBarcelona(ETSEIB),TechnicalUniversityofCatalonia(UPC),Barcelona,Spain,in2001andthePh.D.degreeinelectricalengineeringfromtheUPC,in2007.

In1999,hejoinedEngitrolS.L.,wherehewasProjectEngineerintheautomationandcontrolindustry.In2003,hedevelopedpartofhisPh.D.thesisintheDLR(GermanAerospaceCenter),Braunschweig,Germany.Since2004,hehasbeen

withtheElectricalEngineeringDepartment,UPC,whereheisLecturerandparticipatesintheCITCEA-UPCResearchGroup.Since2009,hehasalsobeenwiththeCataloniaInstituteforEnergyResearch(IREC).Hisresearchinterestsincludethefieldslinkedwithsmartactuators,electricalmachines,powerelectronics,renewableenergyintegrationinpowersystems,aswellasindustrialautomationandengineeringeducation.

因篇幅问题不能全部显示,请点此查看更多更全内容