一、 微化工技术有哪些特点有利于化工过程的绿色化?
答:微化工技术是上世纪90年代初兴起的前沿技术,它集微机电系统设计思想和化学化工基本原理于一体,移植集成电路和微传感器制造技术于一体的一种高新技术。由于微化工设备的内部通道特征尺度通常在几十微米至数百微米,流体薄层间距离极短,通过流体微团的介观黏性变形和分子扩散,可实现反应物料间的超快速微观混合;流体与器壁间有很大的接触面积,能显著提高流体间的换热效率,可实现反应过程的原位高效换热,其传热、传质能力较常规尺度提高1~3个数量级。另外,由于通道特征尺度小于火焰传播的临界尺度及微反应器内反应物持有量小,因而具有内在安全性,将其应用于快速混合、强放热及易燃易爆的反应过程,能显著提高过程的安全性,并可实现连续化操作;由于微化工设备结构的模块化,可实现直接放大(设备单元并联),可快速推进实验室成果的实用化进程。因此采用微反应技术可大幅度提高反应过程中的资源和能量的利用效率,减小过程系统的体积或提高单位体积的生产能力,实现化工生产过程安全、过程强化、微型化和绿色化。 微化工技术可实现化工过程节能降耗和化工系统微型化,并能提高过程安全性,已引起欧美等发达国家的高度重视。微化工系统具有高度集成的模块化结构,可实现就地、按需生产与供货,消除了储运带来的系列问题,同时也使分散资源得到了充分合理利用,对人类生命、环境安全、资源与能源综合利用具有十分重要的意义,微化工技术的发展将会对化工领域产生重大影响。近十年来,微化工技术已迅速发展成为过程强化领域的典型范例之一。
化学工业中的许多反应属强放热过程,存在爆炸危险,而采用微反应技术能够提高过程反应的效率,改善过程反应的安全性。可以预见,微化工技术的开发与应用,将会改变现有化工设备的性能、体积、能耗和物耗,对化学工业的发展产生重大影响。微化学工程与技术着重研究时空特征尺度在数百微米和数百微秒以下时,化工微型设备的设计、模拟、生产和应用等过程的基本特征和规律。与传统化工设备相比,微化工设备具有高传递速率、
直接放大、安全性高、易于控制等优点,可实现化工过程的连续和高度集成,适应分散与柔性生产的要求。微反应技术具有强传热和传质能力,可大幅度提高反应过程中资源和能量的利用效率,实现化工过程的强化、微型化和绿色化。在微尺度的化工系统中,传统的“三传一反”理论需要修正、补充和创新;许多宏观的规律可能不再适用。因此,微尺度下的表面和界面效应,微过程的测量、分析、控制等基础研究尤为重要。
化工过程中进行的化学反应受传递速率或本征反应动力学控制或两者共同控制。就瞬时和快速反应而论,在传统尺度反应设备内进行时,受传递速率控制。而微尺度反应系统内由于传递速率呈数量级式提高,因此这类反应过程的速率将会大幅度提高。例如目前工业应用的烃类硝化反应时间一般在数十分钟至数小时,但在微反应器内可采用绝热硝化并同时改变工艺条件,这类反应的时间可缩短至数秒。传统化工过程主要依靠设备及装置大型化来降低产品成本。相关数据显示,2010年我国单位GDP能耗是美国的3倍、日本的5倍,虽然其中存在国家能源结构和产业结构等因素的差异,然而单就能反映一个国家化学工业发展水平的重要标志——乙烯工业的规模与水平而言,我国乙烯工业的单位能耗是日本的1.6倍。
随着化学工业对能源、环境和资源需求的不断增长这些问题将愈加尖锐,能否有效解决这些问题,已成为我国化学工业能否实现新型工业化的关键。 而微化工技术由于可以实现化工过程节能降耗和化工系统微型化并能提高过程安全性,因此成为解决上述问题的有效途径。
因篇幅问题不能全部显示,请点此查看更多更全内容