您的当前位置:首页正文

例谈新课程背景下高中数学习题课的教学

2022-12-19 来源:汇智旅游网
例谈新课程背景下高中数学习题课的教学 王 炜 (苏州大学数学科学挚院,江苏苏州215000;江苏省江阴市华士高级中学,江苏江阴214421) 摘要:习题课教学是数学课堂教学的重要组成部分。文章以《二次函数的最值问题》为例,就数学习题 课教学的设计理念、备课和教学过程等问题作一探讨。习题课绝不能以考试为目标,而是应以促进学生 形成技能、提高能力为根本目的,否则只能是欲速则不达。 关键词:高中数学;新课程;习题课;教学 中图分类号:G6333.3 文献标识码:A文章编号:1671-0568(2012)01—0052-02 习题课教学是数学课堂教学的重要组成部分,应体现 下,单调性先增后减。 并坚持数学新课程教学理念,关注并凸显学生的主体地 学生2:这些图像都只有一条对称轴,一个顶点,一个 位,准确把握数学思维方法和核心概念的重点,发展学生 最值。 的数学科学素养。随着新课程改革的逐步深入,习题课教 教师:观察得很仔细,但你说的最值是最大值还是最 学正面临着新旧教育理念的碰撞、共存与变革。本文结合 小值? 高中数学新课程教学实践案例,就习题课教学的相关问题 学生2:开口向上时只有最小值,开1:1向下时只有最大 作一探讨。 值。 教师:真的是这样吗?(此问一出,教室里一片寂 一、习题课教学的备课 习题课必须精心备课。习题课的备课不同于新授课、 静,片刻后有一丝窃窃私语)。 复习课,它更强调学生数学思维方法的培养。因此习题课 学生3:定义域为R时是这样的,否则就不好说了。 (其他同学投来赞许的目光)。 的选题是关键,选题的原则是:量不在多,典型就行;题 2.点题。教师直奔主题:对于二次函数,r( ,x为何 不在多,有思想就灵。选题应围绕教师要讲解的和学生要 值,函数有最小值呢? 练习的内容展开,其中教师讲解的题目应具有典型性,难 热身训练(先浏览题目,再口答并点评)打开幻灯 度要略高于学生的练习题,这样在学生完成课堂练习时才 片,让学生做热身训练小题。 有指导性。 ①函数厂( )= +2x十3的最小值为一。(定义域为R) 建构主义认为知识的学习是在原有经验的基础上,在 ②函数厂(曲=x。+2x+3i芏【O,10】上的最小值为, ——人与环境的相互作用过程中,通过同化和顺应,使自身的 最大值为一 (定义域为【0,l0】) 认知结构得以转化和发展的过程。元认知理论指出,学习 3.范例。 过程既是认识过程,又是情感过程,是“知、情、意、 例:求函数厂(柚: :一2x一3在区间【2,3】上的最小值。 行”的和谐统一。备课不只是对教材内容和教学方法的准 教师讲解(充满激情,富有启发性):一慢(审 备,更应包括对学情的分析。只有这样,才能把握学生的 题)、二看(看区间)、三通过(用函数图像辅助解 “最近发展区”,设计出符合学生胃口,实现教学目标的 答)。 教学内容和方法。 变式:求函数f(x)= :一(1X一3在区间【2,3】上的最小值。 二、习题课教学过程的设计 下面以习题课《二次函数的最值问题》的教学过程设 计为例予以说明。 教师讲解:f(x) 兰j一等?。 提问:函数的最小值是否为(一 一3)?(留给学生充 1.导人。复习巩固二次函数的图像和性质,导出习题课 分思考的时间和空间,启发学生画出图像,然后利用投影 主题。 仪给出函数图像)。 教师:同学们,请你们在草稿纸上画出一组二次函数的 因为函数定义域为【2,3],对称轴为 ,需讨论对称 图像。(巡视并个别指导,完成后,指出作图过程中存在的 3】的位置关系。 一些不规范性的问题)这些二次函数的图像有什么特点? 轴x= 与区间【2,学生1:图像开口向上,单调性先减后增;图像开口向 提问:分几种情况讨论?(幻灯片出示函数的图像, 小组合作学习)。 解:当号‘2,即d<4时, .厂(2) 1—2Q , 当2≤詈 ,即4 口≤6时,Y, ̄-ni= (争=一等~. 当兰>3,即a>6时, ~= 厂(3,=6-3a。 提问:例题与变式有什么不同之处,对这变式类问题 又如何处理?(让学生自己区分出题目的不同之处:例题 中对称轴为 =l,而变式中的对称轴为 = ;并归纳出解 决这种题型的方法:分类讨论(讨论对称轴与区间的相对 位置关系,往往分三种情况:对称轴在给定区间的左侧, 对称轴在区间内和对称轴在区间的右侧(课堂气氛达到了 高潮)。 让学生总结归纳是数学学习的一个主动建构的过程, 是主体的自主行为,是别人无法替代的,只有通过主体积 极主动的智力参与才能实现。 4.变式。 教师:例题中的对称轴和区间是确定的,而变式的区 间定、对称轴动,你们能否自己改编一道题目呢? 学生:让对称轴定、区间动,如:求Y: :一2 一3在 区间[m,m+l】上的最小值? 教师:根据学生的叙述,将题目作为变式立刻输入电 脑,然后让学生独立完成题目。最后利用实物投影仪,将 部分学生的解答展示给大家,可选具有典型错误的一份和 解答比较好的一份,让学生自己评判正误,指明存在的问 题以及优缺点。 教师展示变题的过程:将Y= 一2x一3中的 变为2 , 即Y=4 -2“ -3,区间[2,3】变为2 2 3, 变式2:求函数Y=4 一2”‘一3在区间【1,log:3】上的最 小值。 分析:利用换元法,令 ,则y=t 一2t一3(2 fs3), 以下同例题的解法。 提问:还有其它的变法吗? 同学1:求函数f(x)=4 一 ・2” ~3在区间【1,log:3】上的 最小值。 同学2:求函数f(x)=4 一口‘2 一3在区间[m,m+1】上的 最小值。 同学3:求函数厂( )=log x一口‘log! 一3在区『日1【4,8]上 的最小值。 学生跃跃欲试,课堂气氛再次达到高潮。根据建构主 义的观点,学生学习的有效性首先体现在学生能否主动参 与学习,以保证对知识的主动建构。 学生课堂训练:让这3位学生将自己编拟的题目在黑板 上板演完成。 5.角色互换。学生考老师——学生出题,教师现场解 答。 请学生到黑板上板书题目,教师要向学生展示自信 心、解题能力,做完后叫学生到黑板上给教师“阅卷”, 必要时可故意“出错”,锻炼学生的眼力,但最后必须给 I师.=I;,^~,I;|;r ’ i 出正确解法。 6.竞赛。教师“反击”——再考学生 针对学生对本节课内容掌握的情况出一道题,此题中 等难度,学生解答方式为“现场竞赛”。 示例:已知函数f(x)=log ÷・log 妄x∈【1,3],求函数 的值域。 7.下课。因习题课学生用脑较多,故应及时下课,课上 如有题目没讲完可留作课后思考题。 三、教学反思 1.设计思想:实用、高效,三维目标的达成。学生听多 了新授课、复习课,需要换换口味,高中学生面对升学的 压力也需要身心上的调节。习题课作为一种新型课,既可 调节学习情感,又可充分暴露解题过程和方法,还能增加 师生互动,有效地巩固知识,真正达成新课程标准提出来 的知识与能力、过程与方法、情感态度与价值观的三维教 学目标。 2.确保学生的主体地位。尽管教师必须讲解,但其目的 主要是给学生作示范,带动学生思考,所以教师要做好导 演,把学生的积极性充分调动起来,使学生进入角色,保 证学生的主体地位,教师切忌喧宾夺主。同时,教师要面 向全体学生组织教学,特别要更多地关心学习困难学生的 学习,及时给予帮助和指导。 3.调整教与学的方式。调整习题课的教与学的方式是提 高学生数学兴趣、学好数学的前提。习题课教学的目的绝 不是仅仅应付考试,而是应以促进学生形成技能、提高能 力为根本目的。本课不仅让学生感受到数学的严谨、抽 象,而且体验到了数学的趣、美,开放式的教与学使学生 建构自己需要的数学、有用的数学。 习题课更要讲究课堂教学效率,同时兼顾学生的可接 受性。充分利用多媒体课件进行教学,可节省大量的板书 时间,留足学生思维的时间和空间,分步演示教学内容, 及时展示学生在互动中新生成的问题。 4.实现师生共同成长的新课程理念。习题课上师生是同 一战壕里的战友,围绕主题和一个个的堡垒充分展开互 动,增进了师生情感,和谐了师生关系。设计不同层次的 提问能满足个性化教学的需要,促进不同水平学生都能在 原有基础上有所提高。师生角色互换不但体现了教学过程 中师生的平等地位,而且能促进教师业务水平的不断提 高,为教师充分展示个人魅力、吸引学生喜欢数学提供了 表演的舞台,真正实现教学相长。 参考文献: 【1降银耀.新课改条件下如何上好数学习题课[J】.考试周 刊,2010(30):14—15. 【2】马传虎.浅谈新课标下高中数学习题课教学[J].中学教学 参考,2010(26):23—24. 【3】教育部.普通高中数学新课程标准(实验)[s】.北京:人民教育 出版社,2003. 

因篇幅问题不能全部显示,请点此查看更多更全内容