RobertoCipollaandKwan-YeeK.Wong
DepartmentofEngineering,UniversityofCambridge,TrumpingtonStreet,Cambridge,CB21PZ,UK[cipolla|kykw2]@eng.cam.ac.uk
http://svr-www.eng.cam.ac.uk/∼cipolla
frontier pointcontour generatorABSTRACT
Profilesofasculptureproviderichinformationaboutitsgeometry,andcanbeusedformodelreconstructionunderknowncameramotion.Byexploitingcorrespondencesin-ducedbyepipolartangentsontheprofiles,asuccessfulso-lutiontomotionestimationhasbeendevelopedforthecaseofcircularmotion.Arbitrarygeneralviewscanthenbein-corporatedtorefinethemodelbuiltfromcircularmotion.
1.INTRODUCTION
Profiles(alsoknownasoutlines,orsilhouettes)areoftenadominantfeatureinimages.Theycanbeextractedrel-ativelyeasilyandreliablyfromtheimages,andproviderichinformationaboutboththeshapeandmotionofanob-ject.Classicaltechniques[1]formodelreconstructionandmotionestimationdependonpointand/orlinecorrespon-dences,andhencecannotbeapplieddirectlytoprofiles,whichareviewpointdependent.Thiscallsforthedevel-opmentofacompletelydifferentsetofalgorithmsspecifictoprofiles.Thispaperwillgiveabriefreviewofsomeofthestate-of-artalgorithmsformodelbuildingandmotionestimationfromprofiles.
2.PROFILESOFSURFACES
Profilesareprojectionsofcontourgenerators[2],whichde-pendonboththesurfacegeometryandcamerapositions.Ingeneral,2contourgeneratorsonasurface,associatedwith2differentcamerapositions,willbe2distinctspacecurves,andthusthecorrespondingprofilesontheimagesdonotreadilyprovidepointcorrespondences.Afrontierpoint[2]istheintersectionof2contourgeneratorsandliesonanepipolarplanetangenttothesurface(seefig.1).Itfollowsthatafrontierpointwillprojecttoapointontheprofilewhichisalsoonanepipolartangent[3].Epipolartangen-ciesthusprovidepointcorrespondencesonprofiles,andcanbeexploitedformotionestimation.
1
epipolar tangencysilhouetteepipolar planecamera centerepipoleFig.1.Afrontierpointistheintersectionoftwocontourgeneratorsandliesonanepipolarplanewhichistangenttothesurface.Itfollowsthatafrontierpointwillprojecttoapointontheprofilewhichisalsoonanepipolartangent.
3.MODELRECONSTRUCTION
Theimageprofilesofanobjectproviderichinformationaboutitsshape.Underknowncameramotion,itispossibletoreconstructamodeloftheobjectfromitsprofiles.Forcontinuouscameramotionandsimplesmoothsurfaces,asurfacerepresentationcanbeobtainedfromtheprofilesus-ingtheepipolarparameterization[4].CipollaandBlake[4]developedasimplenumericalmethodforestimatingdepthfromaminimumof3discreteviewsbydeterminingtheosculatingcircleoneachepipolarplane.VaillantandFaugeras[5]developedasimilaralgorithmwhichusestheradialplaneinsteadoftheepipolarplane.BoyerandBerger[6]derivedadepthformulationfromalocalapproximationofthesurfaceuptoorder2,whichallowsthelocalshapetobeestimatedfrom3consecutiveviewsbysolvingapairofsimultaneousequations.In[7],Wongetalproposedtousesimpletriangulationforreconstructionfromprofiles,andshowedthatresultsfromsimpletriangulationarecompa-rabletothosefromBoyerandBerger’smethodwhenthecameramotionissmall.
Alternatively,fordiscretemotionandobjectswithmorecomplexgeometry,avolumetricmodelcanbeobtainedby
anoctreecarvingalgorithm[8].ThistechniqueischoseninSection4forillustratingtheresultsofreconstructionusingthemotionestimatedfromprofiles,andthusisdescribedinmoredetailshere.Initially,theoctreeconsistsofasinglecubeinspacewhichenclosesthemodeltobereconstructed.Thecubeisprojectedontoeachimagesandclassifiedaseither(a)completelyoutside1ormoreprofiles,(b)com-pletelyinsidealltheprofiles,or(c)ambiguous.Ifthecubeisclassifiedastype(c),itissubdividedinto8sub-cubes(hencethenameoctree)eachofwhichisagainprojectedontotheimagesandclassified.Thisprocessisrepeatedun-tilapresetmaximumlevel(resolution)isreached.Cubesclassifiedastype(a)arethrownaway,leavingtype(b)and(c)cubeswhichconstitutethevolumetricmodeloftheob-ject.Surfacetriangles,ifneeded,canbeextractedfromtype(c)cubesusingamarchingcubesalgorithm[9].Theoctreecarvingtechniqueissummarizedinalgorithm1,andanoc-treecarvingsoftwarecanbedownloadedfreeat:http://svr-www.eng.cam.ac.uk/research/vision.Algorithm1OctreeCarvingfromProfilesinitializeacubethatenclosethemodel;whilemaxlevelnotreacheddo
foreachcubeinthecurrentleveldoprojectthecubeontoeachimage;classifythecubeaseither:
(a)completelyoutside1ormoreprofiles,(b)completelyinsidealltheprofiles,or(c)ambiguous;
ifthecubeisclassifiedastype(c)thensubdividethecubeinto8sub-cubes;addthesub-cubestothenextlevel;endifendfor
increasethelevelcount;endwhile
Itisworthnotingthatboththesurfaceandvolumetricmodels,estimatedonlyfromtheprofilesoftheobject,cor-respondtothevisualhulloftheobjectwithrespecttothesetofcamerapositions.Concavitiescannotberecoveredastheyneverappearaspartoftheprofiles.Inorderto”carve”awaytheconcavities,methodslikespacecarving[10,11]shouldbeusedinstead.
4.MOTIONESTIMATION
Apracticalalgorithmformotionestimationfromprofiles,inthecaseofcompletecircularmotion,wasintroducedin[12].In[13],theprofilesfrom(incomplete)circularmotionwereexploitedfortheregistrationofanyarbitrarygeneralview,andacompletesystemformodelacquisitionfromun-calibratedprofilesunderbothcircularandgeneralmotion
2
wasdeveloped.Asummaryofthetechniquesreportedin[12,13]isgivenbelow.
The3mainimagefeaturesincircularmotion,namelytheimageoftherotationaxisls,thehorizonlhandaspecialvanishingpointvx(see[12]fordetails),arefixedthrough-outthesequenceandsatisfy
vx·lh
vx
==
0,andKKTls,
(1)(2)
whereKisthe3×3cameracalibrationmatrix.Thefun-damentalmatrixcanbeparameterizedexplicitlyintermsofthesefeatures[14,12],andisgivenby
θT
F=[vx]×+κtan(lslTh+lhls),2
(3)
whereθistheangleofrotation,andκisaconstantwhich
canbedeterminedfromthecameraintrinsicparameters.AsequenceofNimagestakenundercircularmotion,withknowncameraintrinsicparameters,canhencebedescribedbyN+2motionparameters.Byusingthe2outerepipolartangents[13],theNimageswillprovide2N(or2whenN=2)independentconstraintsontheseparameters,andasolutionwillbepossiblewhenN≥3.
Thecircularmotionwillgenerateawebofcontourgen-eratorsaroundtheobject,whichcanbeexploitedforreg-isteringanynewarbitrarygeneralview.Givenanarbitrarygeneralview,theassociatedcontourgeneratorwillintersectwiththiswebandformfrontierpoints.Ifthecameraintrin-sicparametersareknown,the6motionparametersofthenewviewcanbefixedifthereare6ormorefrontierpointsontheassociatedcontourgenerator.Thiscorrespondstohavingaminimumof3viewsundercircularmotion,eachproviding2outerepipolartangentstotheprofileinthenewgeneralview(seefig.2).
ej0ej1ej2Fig.2.Threeviewsfromcircularmotionprovide6outerepipolartangentstotheprofileinthenewgeneralviewforestimatingitspose.
Themotionestimationproceedsasanoptimizationwhichminimizesthereprojectionerrorsofepipolartan-gents.Forviewiandviewj,afundamentalmatrixFijisformedfromthecurrentestimateofthemotionparame-ters,andtheepipoleseijandejiareobtainedfromtheright
andleftnullspacesofFij.Theouterepipolartangentpointstij0,tij1andtji0,tji1arelocatedinviewiandjrespec-tively(seefig.3).Thereprojectionerrorsarethengivenbythegeometricdistancesbetweentheepipolartangentpointsandtheirepipolarlines,
dijk
==
,
T2T2(Fijtjik)1+(Fijtjik)2.2(Fijtijk)2+(Ft)ijijk21
Fijtij0tji0ejiTtFijji0tTjikFijtijktTjikFijtijk
(4)
Fig.4.Top:4imagesfromanuncalibratedsequenceofa
haniwa.Bottom:4imagesfromanuncalibratedsequenceofahumanhead.
djik(5)
tij0eij
Fijtij1tji1tij1TtFijji1Fig.3.Themotionparameterscanbeestimatedbymin-imizingthereprojectionerrorsofepipolartangents,which
aregivenbythegeometricdistancesbetweentheepipolartangentpointsandtheirepipolarlines.
ForasequenceofNimagestakenundercircularmotion,theimageoftherotationaxisandthehorizonareinitializedapproximately,andtheanglesarearbitrarilyinitialized.Thecostfunctionisgivenby1
Ccm(x)=
4i=1
(i+3,N)2Nmin
j=i+1
k=1
Fig.5.Differentviewsofthemodelreconstructedfrom
thehaniwasequenceusingthemotionestimatedfromtheprofiles.
dijk(x)2+djik(x)2,(6)
wherexconsistsoftheN+2motionparameters.
Forarbitrarygeneralmotion,the6motionparameterscanbeinitializedbyroughlyaligningtheprojectionofthe3Dmodelbuiltfromtheestimatedcircularmotionwiththeimage.Thecostfunctionofgeneralmotionforviewjisgivenby
N2
22fijk=1dijk(x)+djik(x),(7)Cj(x)=i=1N
4i=1fijwherexconsistsofthe6motionparameters.fijis0ifthebaselineformedwithviewipassesthroughtheobject,otherwiseitis1.
Themotionestimationprocedureissummarizedinal-gorithm2.Fig.5andfig.6showsomeexamplesofrecon-structionfromthemotionestimatedusingprofiles(seefig.4fortheimagesequencesused).
3
Fig.6.Differentviewsofthemodereconstructedfromtheheadsequenceusingthemotionestimatedfromtheprofiles.
Algorithm2MotionEstimationfromProfiles
extracttheprofilesusingcubicB-splinesnakes[4];initializels,lhandtheN−1anglesforthecircularmo-tion;
whilenotconvergeddo
computethecostforcircularmotionusing(6);
updatetheN+2motionparameterstominimizethecost;endwhile
Formtheessentialmatricesfromthefundamentalmatri-cesusingthecalibrationmatrix;
Decomposetheessentialmatricestoobtaintheprojectionmatrices;
Buildapartialmodelusinganoctreecarvingalgorithm;foreacharbitrarygeneralviewdo
initializethe6motionparametersusingthepartialmodelfromcircularmotion;whilenotconvergeddo
computethecostforthegeneralmotionusing(7);updatethe6motionparameterstominimizethecost;endwhileendfor
Refinethemodelusingthenowcalibratedimagesfromgeneralmotion.
[4]R.CipollaandA.Blake,“Surfaceshapefromthede-formationofapparentcontours,”Int.JournalofCom-puterVision,vol.9,no.2,pp.83–112,November1992.[5]R.VaillantandO.D.Faugeras,“Usingextremal
boundariesfor3Dobjectmodeling,”IEEETrans.onPatternAnalysisandMachineIntelligence,vol.14,no.2,pp.157–173,February1992.[6]E.BoyerandM.O.Berger,“3dsurfacereconstruction
usingoccludingcontours,”Int.JournalofComputerVision,vol.22,no.3,pp.219–233,March1997.[7]K.-Y.K.Wong,P.R.S.Mendonc¸a,andR.Cipolla,
“Reconstructionandmotionestimationfromapparentcontoursundercircularmotion,”inProc.BritishMa-chineVisionConference,T.PridmoreandD.Elliman,Eds.,vol.1,Nottingham,UK,September1999,pp.83–92.[8]R.Szeliski,“Rapidoctreeconstructionfromimagese-quences,”ComputerVision,GraphicsandImagePro-cessing,vol.58,no.1,pp.23–32,July1993.[9]W.E.LorensenandH.E.Cline,“Marchingcubes:
ahighresolution3Dsurfaceconstructionalgorithm,”ACMComputerGraphics,vol.21,no.4,pp.163–169,July1987.[10]K.N.KutulakosandS.M.Seitz,“Atheoryofshape
byspacecarving,”Int.JournalofComputerVision,vol.38,no.3,pp.197–216,July2000.[11]A.Broadhurst,T.W.Drummond,andR.Cipolla,“A
probabilisticframeworkforspacecarving,”inProc.8thInt.Conf.onComputerVision,vol.I,Vancouver,BC,Canada,July2001,pp.388–393.[12]P.R.S.Mendonc¸a,K.-Y.K.Wong,andR.Cipolla,
“Epipolargeometryfromprofilesundercircularmo-tion,”IEEETrans.onPatternAnalysisandMachineIntelligence,vol.23,no.6,pp.604–616,June2001.[13]K.-Y.K.WongandR.Cipolla,“Structureandmotion
fromsilhouettes,”inProc.8thInt.Conf.onComputerVision,vol.II,Vancouver,BC,Canada,July2001,pp.217–222.[14]T.VievilleandD.Lingrand,“Usingsingulardisplace-mentsforuncalibratedmonocularvisualsystems,”inProc.4thEuropeanConf.onComputerVision,ser.LectureNotesinComputerScience,B.BuxtonandR.Cipolla,Eds.,vol.1065.Cambridge,UK:Springer–Verlag,April1996,pp.207–216.
5.CONCLUSIONS
Theincorporationofarbitrarygeneralviewsrevealsin-formationwhichisconcealedundercircularmotion,andgreatlyimprovesboththeshapeandtexturesofthe3Dmodels.Sinceonlyprofileshavebeenusedinboththemotionestimationandoctreecarving,nocornerdetectionnormatchingisnecessary.Thismeansthatthealgorithmiscapableofreconstructinganykindofobjects,includingsmoothandtexturelesssurfaces.Experimentsonvariousobjectshaveproducedconvincing3Dmodels,demonstrat-ingthepracticalityofthealgorithm.
6.REFERENCES
[1]O.D.Faugeras,Three-DimensionalComputerVision:
aGeometricViewpoint.Cambridge,MA:MITPress,1993.[2]R.CipollaandP.J.Giblin,VisualMotionofCurves
andSurfaces.Cambridge,UK:CambridgeUniver-sityPress,1999.[3]J.PorrillandS.B.Pollard,“Curvematchingand
stereocalibration,”ImageandVisionComputing,vol.9,no.1,pp.45–50,February1991.
4
因篇幅问题不能全部显示,请点此查看更多更全内容