您的当前位置:首页正文

例谈排列组合问题的若干解题策略

2023-07-27 来源:汇智旅游网
例谈排列组合问题的若干解题策略

山东省 刘允忠

排列组合应用题,在高考中多是以客观题的形式出现,每年必考。由于有些问题比较抽象,题型繁多,解法独特,再加上限制条件,往往容易发生错误。本文就排列组合问题的常见题型的求解方法加以归类,供参考。

一、相临问题——整体捆绑法

例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?

解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。

评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有

种排法。

二、不相临问题——选空插入法

例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?

解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:

种 .

评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有

种排法。

三、复杂问题——总体排除法

在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.

种,但其中正六边形的对角线所含的中心和顶点

三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法

对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.

解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选种,所以共有=72种不同的排法.

例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种. 一个位置,有

种,而其余学生的排法有

解:由于第一、三、五位置特殊,只能安排主力队员,有选出2名安排在第二、四位置,有

种排法,而其余7名队员

种排法,所以不同的出场安排共有=252种.

解:从7个点中取3个点的取法有

五、多元问题——分类讨论法

对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )

A.42 B.30 C.20 D.12

2

解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A6种;2.相临:21221

共有A2A6种。故不同插法的种数为:A6 +A2A6=42 ,故选A。

例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)

解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有

=24种方法, 用四种颜色着色有

=48种方法,从而共有24+48=72种方法,应填72.

六、混合问题——先选后排法

对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.

例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )

D.

解:本试题属于均分组问题。 则12名同学均分成3组共有个不同的路口的不同的分配方案共有:

种,故选A。

种方法,分配到三

A.

B.

种 C.

例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种

212

解:先选后排,分步实施. 由题意,不同的选法有: C3种,不同的排法有: A3·A2,故不

122

同的种植方法共有A3·C3·A2=12,故应选C.

七.相同元素分配——档板分隔法

例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?

本题考查组合问题。

解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。

总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。

具体说,解排列组合的应用题,通常有以下途径:

(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。 (2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。

(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。

因篇幅问题不能全部显示,请点此查看更多更全内容