InstituteofPhysics,WroclawUniversityofTechnology,Wybrze˙zeWyspia´nskiego27,50-370Wroclaw,Poland
b
InstituteofMathematics,UniversityofOpole,Oleska48,Opole,Poland
c
InstituteofPhysics,OdessaUniversity,Odessa,Ukraine
d
InstituteofMathematics,WroclawUniversityofTechnology,Wybrze˙zeWyspia´nskiego27,50-370Wroclaw,Poland
Themechanicaleffectsinfinitetwo-dimensionalelectronsystems(quantumdotsordroplets)ina
strongperpendicularmagneticfieldarestudied.Itisshownthat,duetoasymmetryofthecyclotrondynamics,anadditionalin-planeelectricfieldcausesagroundstatetransitionaccompaniedbyachangeintheaveragetotalangularmomentumofthesystem,unlessthelateralconfiningpotentialisexactlyparabolic.Aprecisemechanicalexperimentisproposedinwhichamacroscopicangularmomentumofadensematrixofquantumdotscouldbemeasuredandusedtodetectandestimateanharmonicityoftheconfinement.73.21.La,75.80.+q
a
LucjanJacaka,JurijKrasnyjbc,DorotaJacakd,andArkadiuszW´ojsa
arXiv:cond-mat/0101133v1 [cond-mat.mes-hall] 10 Jan 2001I.INTRODUCTION
Themanufacturingofsemiconductorquantumdotswithacontrollednumberofconfinedelectronsallowstheex-perimentalstudyoffinitequantumsystemsintheareanotaccessibleinordinaryatomicphysics(cf.[1]forreview).
Particularlyinterestingarethemagneticeffectswhichinquantumdotsareoftheordersofmagnitudegreaterthaninatoms,asaconsequenceofthemagneticlengthlB=
ˆint=H
i e2 2m epri+ ×raretheexternal magneticanditsvectorpotentialinthesymmetricgauge,E=(Ex,Ey,0)istheexternalelectricfield,ǫ0isthedielectricconstant,andµBandgareBohrmagnetonandthegyromagneticfactor.WeincludedthePaulitermeventhoughforsomematerialstheZeemansplittingisverysmallcomparedtothetypicalorbitalexcitationenergyofafewmeV(e.g.,forthebulkGaAsatsmallBtheZeemansplittingisonlyabout0.03meV/T).Thistermhasnoinfluenceonourresults. Ifthelateralconfiningpotentialisa2Dharmonicwell, V(ri)= 1 2B 2m epri+ 2 2mω0(ri+r0)2− 1 2mω0 .(7) andtheeigenequation[cf.Eq.(4)] Nowweformallychangethecoordinate,ri+r0=xi(notethatpr=px)toobtain21122ˆAxi−r0+mω0r0+gµBσiBHi= c2 ˆiψ(xi−r0)=εψ(xi−r0).H (8) (9) Wecannowusethelinearityofthevectorpotential, Axi−r0=Axi− 1 2m pxi+ e 2 22 mω0xi− 1 2¯hc (B×r0)·xiψ′(xi).2 (13) ˆ′isdifferentfromHˆo,the(axiallysymmetric)single-particleHamiltonianHˆiofEq.(3)intheFinally,wenotethatHii absenceofanelectricfield,onlybyaconstant, ˆi′=Hˆio−1H 2 22 mω0r0=εo−∆ε. (16) ThepairofEqs.(13)and(16)showthattheeffectofanelectricfieldEonthesingle-particlespectrumofaparabolic dotconsistsmerelyofarigiddisplacementofthewavefunctionsbyr0∝E,aphasefactor,andaconstantshiftofenergiesby∆ε∝E2.Inparticular,despitebreakingoftherotationalsymmetrybytheelectricfield,thewavefunctionsremainrotationallysymmetric(althoughtheaxisofsymmetryisdisplacedfromthecenteroftheconfiningpotential ˆintofthemany-bodyV).Similarconclusionsremainvalidforthemany-electronsystemsincetheinteractiontermH ˆistranslationallyinvariant,HamiltonianH N e2 ǫ0|xi−xj| .(17) i andenergiesEλoftheinteractingmany-electronsystemare: ie Ψλ(r1,r2,...,rN)=exp 2 ′ whereΨ′λandEλdescribethesystematE=0, 22 Nmω0r0, (19) ′′ˆoΨ′Hλ(r1,r2,...,rN)=EλΨλ(r1,r2,...,rN). (20) Letusstressthattheabove-discussedsymmetryofamulti-electronplanarquantumdotwithparabolicconfinement isindependentofthesymmetryresponsiblefortheKohntheoremandconnectedwiththeseparationofthecenterofmassandrelativedynamics. III.EFFECTSOFANIN-PLANEELECTRICFIELDINPARABOLICQUANTUMDOTS Thetransformationpresentedaboveallowsthecalculationofvariouseffectscausedbyanin-planeelectricfieldinthepresenceofamagneticfieldorientedperpendicularlytothequantumdot.Forexample,usingEqs.(18)–(20)onecancalculatethechangeoftheaverageenergyEatatemperatureTbyapplyingthecanonicalGibbsdistribution, E= 1 Z λ Eλe−βEλ=E′− Ne2E2 Z′ λ ′−βEλEλe ′ (22) 3 describesthedotatE=0.Here,Z=Tre−βHisthestatisticalfunctionandβ=(kBT)−1.Thepolarizabilityαis α=− 1∂E =Ne2 ˆ 2mω0 .(24) Notethat∆ǫdependsonneitherTnorB.Onecanalsocalculatetheexpectationvalueofthegeneralizedmomentum, N priΨλ(r1,r2,...,rN)dr1dr2...drNpλ=Ψ∗λ(r1,r2,...,rN) = Ψ′∗λ(x1,x2,...,xN) B×r0= i=1N pxiΨ′λ(x1,x2,...,xN)dx1dx2...dxN+ Ne i=12 Ne 2c p+mrim ee pxi+ 2c =L′λ− Ne3 r0×(B×r0) (27)4B,2cm2ω0 and,forthechangeofthethermodynamicaverage,∆L′=∆L′λ.Thekinetic(gaugeinvariant)angularmomen-tumM=r×mvdoesnotchangeintheelectricfield, Ne∗ ri×(pri+Mλ=Ψλ(r1,r2,...,rN) i=1 c ′ Axi)Ψ′(x,x,...,x)dxdx...dx=Mλ12N12Nλ (28) Notealsothattheelectricfielddoesnotaffectmagnetization, ∂Eλ ∂B . (29) 4 IV.ANHARMONICEFFECTS Thesimpledependenceofmany-electronwavefunctionsandenergiesontheelectricfieldgivenbyEqs.(13)and(16)dependedcriticallyontheharmonicformoftheconfinementV.Thissimpledependenceresultedintheinsensitivityofanumberofmeasurablequantitiestotheelectricfield,amongthemthekineticangularmomentumM.Inrealisticquantumdots,whoseconfinementisnotexactlyharmonic,theelectricfieldcausesmorethanarigiddisplacementandaphasechangeofthesingle-andmany-particlewavefunctions.Theharmoniccaseistheonlycaseinwhichthecombinationoftherotationallysymmetricconfiningpotentialandthepotentialoftheuniformin-planeelectricfieldremainsrotationallysymmetric.Inallothercases,theshapeofthejointsingle-particlepotentialdependsonE,andsodothesingle-andmany-particlechargedensityprofilesandanumberof(inprinciple)measurablequantities,suchasM.Oneexampleisthatoflargerdotswhoseconfinementcanbeusuallywellapproximatedbyarotationallysymmetrichard-wallpotential.Insuchsystems,anelectricfieldcreatesanasymmetricpotentialminimumwithinadot,andtheelectronsareconfinedtoasmallerarea.Anotherexampleisthatofveryshallowdotsinwhichastrongelectricfieldcanevencauseunbindingofelectrons.Alltheseeffectsarewell-knowninthecontextof1Dconfinementofelectronsinquantumwellsandheterojunctions. Ifindeedexperimentallymeasurable,thedependenceofMonEcouldbeamechanicalprobeoftheanharmonicityoftheconfinement.ThemajordifficultycouldbeasmallmagnitudeofthechangesofMexpectedforquantumdots,whichhowevercanbeincreasedbymanyordersofmagnitudeinadense(3D,i.e.multi-layer)matrixofdots.ThespecificvaluesofthetotalMofndotsinaunitareadependonmanyfactorssuchasn,N,B,orV,butinthesimplestcaseofaverylargeB,inwhichso-calledfractionalquantumHalldropletsforminlargerquantumdots,MisoftheorderofnN(N−1)¯h.ToestimatetheorderofmagnitudeofthechangeofMonecanusetheexpression(27)forthechangeofL.UsingthefollowingparametersforadensematrixofGaAsdots:m=0.067,n=1010cm−2,hω0=3.3meV,N=10,E=109V/cm,B=10T,andS=1cm2,weobtain∆L=10−5gcm2/s.Notethat¯ −4 thefactorω0inEq.(27)stronglyfavorsshallowerconfinement,typicalfordotsdefinedelectrostatically[5,11]bymeansofapatternofelectrodesgrownovera2Dheterostructure.Whetherdetectionangularmomentumassmallasestimatedaboveispossibleornot,wefindtheideaofthemicroscopicmotionofagreatnumberofelectronscausingamacroscopicrotationofasamplequiteintriguing.Themostsensitivemeasurementwouldprobablyinvolvetheresonancebetweenthevibrationsofadotmatrixsuspendedintheformofatorsionpendulumandtheoscillationsofanelectricfield. V.CONCLUSION Wehavestudiedtheeffectofthein-planeelectricfieldEonthewavefunctionsandenergiesofmany-electronsystemsconfinedinquasi-two-dimensionalquantumdotsinaperpendicularmagneticfield.Wehaveshownthatforthespecialcaseoftheharmoniclateralconfiningpotentialtheeffectoftheelectricfieldisameredisplacementofthemany-electronwavefunctioninthedirectionofthefieldandachangeofphase.Inconsequence,anumberofmeasurablequantities,suchasthekineticangularmomentumMremainunchangedintheelectricfield.SincethelackofdependenceofMonEisauniquepropertyoftheharmonicconfinement,thechangeofangularmomentumunderthevariationofEisameasureoftheactualanharmonicityofthisconfinement.Anexperimentinwhichtherotationofadensequantumdotmatrixunderoscillationofanelectricfieldoccursisproposed. ACKNOWLEDGMENT ThisworkwassupportedbyKBNProjectNo:2PO3B05518. [3]D.Heitmann,PhysicaB212,201(1995);C.SikorskiandU.Merkt,Phys.Rev.Lett.62,2164(1989);T.Demel,D. Heitmann,P.Grambow,andK.Ploog,Phys.Rev.Lett.64,788(1990).[4]W.Kohn,Phys.Rev.B123,1242(1961). [5]R.C.Ashoori,Nature379,413(1996);R.C.Ashoori,H.L.St”ormer,J.S.Weiner,L.N.Pfeifer,andK.Baldwin,Phys. Rev.Lett.71,613(1993).[6]A.W´ojsandP.Hawrylak,Phys.Rev.B53,10841(1996);A.W´ojs,P.Hawrylak,S.Fafard,andL.Jacak,Phys.Rev.B 54,5604(1996). [7]M.Grundmann,PhysicaE5,167(2000);S.Fafard,K.Hinzer,S.Raymond,M.Dion,J.Mc.Caffrey,Y.Feng,andS. Charbonneau,Science274,1350(1996). [8]D.LossandD.DiVincenzo,Phys.Rev.A57,120(1998);Ch.BennetandD.DiVincenzo,Nature404,247(2000).[9]P.ZanardiandF.Rossi,Phys.Rev.B59,6170(1999);Phys.Rev.Lett.81,4752(1998).[10]L.LandauandE.Lifschyc,QuantumMechanics,Warsaw1979(inPolish). [11]A.Lorke,J.P.Kotthaus,andK.Ploog,Phys.Rev.Lett.64,2559(1990);R.Maurer,D.Heitmann,andK.Ploog,Phys. Rev.Lett.68,1371(1992);C.SikorskiandU.Merkt,Phys.Rev.Lett.62,2164(1989);J.Alsmeier,E.Batke,andJ.P.Kotthaus,Phys.Rev.B41,1699(1990). 6 因篇幅问题不能全部显示,请点此查看更多更全内容