您的当前位置:首页正文

函数的图像

2020-09-20 来源:汇智旅游网

  4.8  正弦函数、余弦函数的图像和性质(第二课时)

  (一)教学具准备

  直尺,投影仪.

  (二)教学目标 

  1.掌握 , 的定义域、值域、最值、单调区间.

  2.会求含有 、 的三角式的定义域.

  (三)教学过程 

  1.设置情境

  研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

  2.探索研究

  师:同学们回想一下,研究一个函数常要研究它的哪些性质?

  生:定义域、值域,单调性、奇偶性、等等.

  师:很好,今天我们就来探索 , 两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)

  师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

  师:请同学思考以下几个问题:

  (1)正弦、余弦函数的定义域是什么?

  (2)正弦、余弦函数的值域是什么?

  (3)他们最值情况如何?

  (4)他们的正负值区间如何分?

  (5) 的解集如何?

  师生一起归纳得出:

  (1)正弦函数、余弦函数的定义域都是 .

  (2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性.

  (3)取最大值、最小值情况:

  正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.

  余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.

  (4)正负值区间:

  ( )

  (5)零点: ( )

  ( )

  3.例题分析

  【例1】求下列函数的定义域、值域:

  (1) ; (2) ; (3) .

  解:(1) ,

  (2)由 ( )

  又∵ ,∴

  ∴定义域为 ( ),值域为 .

  (3)由 ( ),又由

  ∴

  ∴定义域为 ( ),值域为 .

  指出:求值域应注意用到 或 有界性的条件.

  【例2】求下列函数的最大值,并求出最大值时 的集合:

  (1) , ; (2) , ;

  (3) (4) .

  解:(1)当 ,即 ( )时, 取得最大值

  ∴函数的最大值为2,取最大值时 的集合为 .

  (2)当 时,即 ( )时, 取得最大值 .

  ∴函数的最大值为1,取最大值时 的集合为 .

  (3)若 , ,此时函数为常数函数.

  若 时, ∴ 时,即 ( )时,函数取最大值 ,

  ∴ 时函数的最大值为 ,取最大值时 的集合为 .

  (4)若 ,则当 时,函数取得最大值 .

  若 ,则 ,此时函数为常数函数.

  若 ,当 时,函数取得最大值 .

  ∴当 时,函数取得最大值 ,取得最大值时 的集合为 ;当 时,函数取得最大值 ,取得最大值时 的集合为 ,当 时,函数无最大值.

  指出:对于含参数的最大值或最小值问题,要对 或 的系数进行讨论.

  思考:此例若改为求最小值,结果如何?

  【例3】要使下列各式有意义应满足什么条件?

  (1) ; (2) .

  解:(1)由 ,

  ∴当 时,式子有意义.

  (2)由 ,即

  ∴当 时,式子有意义.

  4.演练反馈(投影)

  (1)函数 , 的简图是(      )

  (2)函数 的最大值和最小值分别为(     )

  A.2,-2       B.4,0        C.2,0         D.4,-4

  (3)函数 的最小值是(     )

  A.          B.-2          C.           D.

  (4)如果 与 同时有意义,则 的取值范围应为(     )

  A.       B.       C.       D. 或

  (5) 与 都是增函数的区间是(      )

  A. ,                B. ,

  C. ,           D. ,

  (6)函数 的定义域________,值域________, 时 的集合为_________.

  参考答案:1.B   2.B   3.A  4.C  5.D 

  6. ; ;

  5.总结提炼

  (1) , 的定义域均为 .

  (2) 、 的值域都是

  (3)有界性:  

  (4)最大值或最小值都存在,且取得极值的 集合为无限集.

  (5)正负敬意及零点,从图上一目了然.

  (6)单调区间也可以从图上看出.

  (五)板书设计 

  1.定义域

  2.值域

  3.最值

  4.正负区间

  5.零点

  例1

  例2

  例3

  课堂练习

  课后思考题:求函数 的最大值和最小值及取最值时的 集合

  提示:

因篇幅问题不能全部显示,请点此查看更多更全内容