您的当前位置:首页正文

2014年中考数学压轴题精编--安徽篇(试题及答案)

2023-06-23 来源:汇智旅游网
2014中考数学压轴题精编----安徽篇

2014中考数学压轴题精编----安徽篇

1.(安徽省)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1. (1)若c=a1,求证:a=kc;

(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;

(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由. A A1

bc c1 b1

B1 C1 B C aa1

1.解(1)证:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴

a=k,∴a=ka1 a1又∵c=a1,∴a=kc ········································································································ 3分 (2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2 ······································· 8分

abc此时===2,∴△ABC∽△A1B1C1且c=a1 ··············································· 10分

a1b1c1注:本题也是开放型的,只要给出的△ABC和△A1B1C1符合要求就相应赋分. (3)解:不存在这样的△ABC和△A1B1C1.理由如下: 若k=2,则a=2a1,b=2b1,c=2c1 又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c

∴b=2c ·························································································································· 12分 ∴b+c=2c+c=3c<4c=a,而b+c>a

故不存在这样的△ABC和△A1B1C1,使得k=2. ······················································· 14分

注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下k=2的情况不可能即可.

2.(安徽省B卷)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结OG.

F (1)判断OG与CD的位置关系,写出你的结论并证明;

(2)求证:AE=BF; C G (3)若OG·DE=3(2-2),求⊙O的面积. D

E A B O

2014中考数学压轴题精编----安徽篇

1

2014中考数学压轴题精编----安徽篇

.解:

(1)猜想:OG⊥CD.

证明:如图,连结OC、OD,则OC=OD.

F ∵G是CD的中点

C G ∴由等腰三角形的性质,有OG⊥CD. ······················ 2分

D (2)证明:∵AB是⊙O的直径,∴∠ACB=90°.

E H 而∠CAE=∠CBF(同弧所对的圆周角相等). A O

B

在Rt△ACE和Rt△BCF中

∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF ∴Rt△ACE≌Rt△BCF.(ASA)

∴AE=BF. ·································································································· 6分

(3)解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.

∴OH=

12AD,即AD=2OH. 又∠CAD=∠BAD,∴CD=∠BD,∴OH=OG.

在Rt△BDE和Rt△ADB中

∵∠DBE=∠DAC=∠BAD,∴Rt△BDE∽Rt△ADB. ∴

BDDEAD=

DB,即BD2 =AD·DE. ∴BD2

=AD·DE=2OG·DE=6(2-2). ················································· 8分 又BD=FD,∴BF=2BD.

∴BF22

=4BD =24(2-2).„„„„„„„„„„„„„„①. ·········· 9分 设AC=x,则BC=x,AB=2x.

∵AD是∠BAC的平分线,∴∠FAD=∠BAD. 在Rt△ABD和Rt△AFD中

∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD ∴Rt△ABD≌Rt△AFD.(ASA) ∴AF=AB=2x,BD=FD.

∴CF=AF-AC=2x-x=(2-1)x. 在Rt△BCF中,由勾股定理,得

BF2222 =BC +CF =x+[(2-1)x]2=2(2-2)x2

.„„„„②. ········ 10分

由①、②,得2(2-2)x2

=24(2-2).

∴x2

=12,∴x=23或-23(舍去).

2014中考数学压轴题精编----安徽篇

2

2

2014中考数学压轴题精编----安徽篇

∴AB=2x=2·23=26.

∴⊙O的半径长为6. ·············································································· 11分 ∴S⊙O=π

·(

2

6)=6π. ·········································································· 12分

2

3.(安徽省B卷)已知:抛物线y=ax+bx+c(a≠0)的对称轴为x=-1,与x轴交于A、B两点,与y轴交于点C,其中A(-3,0)、C(0,-2). (1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.

(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

3.解:

y A O B x C b-2a =-1(1)由题意得9a-3b+c =0 ··················································································· 2分

c =-224解得a=,b=,c=-2.

33224∴这条抛物线的函数表达式为y=x+x-2 ············································ 4分

33

(2)如图,连结AC、BC.

由于BC的长度一定,要使△PBC的周长最小,必须使PB+PC最小. 点B关于对称轴的对称点是点A,AC与对称轴x=-1的交点即为所求的点P. 设直线AC的表达式为y=kx+b,则

-3k+b= 0····························································· 6分 b= -2y 解得k=-

A 2∴直线AC的表达式为y=-x-2 ······································· 7分 32,b=-2. 3E O D P C 3

B x 2014中考数学压轴题精编----安徽篇

2014中考数学压轴题精编----安徽篇

把x=-1代入上式,得y=-∴点P的坐标为(-1,-

24×(-1)-2=-. 334) ········································································· 8分 3(3)S存在最大值,理由如下:

∵DE∥PC,即DE∥AC,∴△OED∽△OAC.

OEOAOE333,即==,∴OE=3-m,∴AE=m.

222ODOC2-m方法一:

连结OP

S=S△POE+S△POD-S△OED

134113=×(3-m)×+×(2-m)×1-×(3-m)×(2-m) 223222=-∵-

323m+m ···························································································· 10分 42

3<0,∴S存在最大值. ······································································ 11分 4232333m+m=-(m-1)+ 4244

∵S=-

∴当m=1时,S最大=方法二:

3. ··········································································· 12分 4S=S△OAC-S△OED-S△PAE-S△PCD

1131341=×3×2-×(3-m)×(2-m)-×m×-×m×1 2222232

=-

323m+m ···························································································· 10分 42

以下同方法一.

4.(安徽省芜湖市)(本小题满分12分)如图,BD是⊙O的直径,OA⊥OB,M是劣弧上一点,过M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点. (1)求证:PM=PN; (2)若BD=4,PA= 4.解:

(1)证明:连接OM ············································· 1分

∵MP是⊙O的切线,∴OM⊥MP ∴∠OMD+∠DMP=90°

2014中考数学压轴题精编----安徽篇

4 3B M AO,过B点作BC∥MP交⊙O于C点,求BC的长.2C N B O M E C O D N A A P P D 2014中考数学压轴题精编----安徽篇

∵OA⊥OB,∴∠OND+∠ODM=90° 又∵∠MNP=∠OND,∠ODM=∠OMD ∴∠DMP=∠MNP,∴PM=PN ···················· 4分 (2)解:设BC交OM于点E,∵BD=4,∴OA=OB=

∴PA=

1BD=2 23AO=3,∴PO=5 ··················································································· 5分 21BC ·············································· 7分 2∵∠BOM+∠MOP=90°,在Rt△OMP中,∠MPO+∠MOP=90°

∵BC∥MP,OM⊥MP,∴OM⊥BC,∴BE=

∴∠BOM=∠MPO,又∵∠BEO=∠OMP=90° ∴△OMP∽△BEO,∴得:

OMBE ······································································ 10分 =

OPBO2BE48,∴BE=,∴BC= ································································· 12分 =

55525.(安徽省芜湖市)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-33,1)、C(-33,0)、O(0,0).将此矩形沿着过E(-3,1)、F(-C的对应点分别为B′、C′.

(1)求折痕所在直线EF的解析式;

(2)一抛物线经过B、E、B′三点,求此二次函数解析式;

43,0)的直线EF向右下方翻折,B、3(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

y

E B A C F O x

5.解:

(1)由于折痕所在直线EF过E(-3,1)、F(-∴tan∠EFO=3,直线EF的倾斜角为60° ∴直线EF的解析式为:y-=tan60°[x-(-3)]

化简得:y=3x+4. ································································································· 3分

2014中考数学压轴题精编----安徽篇

5

43,0) 32014中考数学压轴题精编----安徽篇

(2)设矩形沿直线EF向右下方翻折后,B、C的对应点为B′(x1,y1),C′(x2,y2) 过B′作B′A′⊥AE交AE所在直线于A′点

∵B′E=BE=23,∠B′EF=∠BEF=60° ∴∠B′EA′=60°,∴A′E=3,B′A′=3

∴A与A′重合,B′在y轴上,∴x1=0,y1=-2,即B′(0,-2)

【此时需说明B′(x1,y1)在y轴上】 ········································································ 6分 设二次函数的解析式为:y=ax+bx+c

2

∵抛物线经过B(-33,1)、E(-3,1)、B′(0,-2)

1a = -327a-33b+c=14∴3a-3b+c=1 解得b = -3

3c=-2

c = -2124∴该二次函数解析式为:y=-x-·························································· 9分 3x-2 ·

33

(3)能,可以在直线EF上找到P点,连接B′C交EF于P点,再连接BP 由于B′P=BP,此时点P与C、B′在一条直线上,故BP+PC=B′P+PC的和最小

由于为BC定长所以满足△PBC周长最小.······························································ 10分 设直线B′C的解析式为:y=kx+b 23-2 = bk = -则 解得9 0 = -33k + bb = -2 y 23x-2 9 ···················································· 12分

又∵点P为直线B′C与直线EF的交点

∴直线B′C的解析式为:y=-

B C F E O P A′ A x B′ C′ 1823x = -3x-2y = -11∴ 解得 910y = 3x+4y = -11 ∴点P的坐标为(-

1810········································································ 14分 3,-)·

11116.(安徽省合肥一中自主招生)已知:甲、乙两车分别从相距300(km)的M、N两地同时出发相向而行,

其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.

(1)试求线段AB所对应的函数关系式,并写出自变量的取值范围; (2)当它们行驶到与各自出发地的距离相等时,用了

9h,求乙车的速度; 26

2014中考数学压轴题精编----安徽篇

2014中考数学压轴题精编----安徽篇

(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

y∕km y∕km

A 300 300 甲

6.解:

B 274 乙 C O 3 图1

x∕h

O 图2

x∕h

(1)设线段AB所对应的函数关系式为y=kx+b

300=3k+bk=-8027把(3,300),(,0)代入得 解得 270=k+bb=54044∴线段AB所对应的函数关系式为y甲=-80x+540 ···································· 5分 自变量x的取值范围是3<x≤(2)∵x=

2727(或3≤x≤,下同) ·························· 7分 449279在3<x≤中,∴把x=代入y甲=-80x+540中得y甲=180 224180=40(km/h) ······························································· 12分 92∴乙车的速度为

(3)由题意知有两次相遇

方法一:

①当0≤x≤3时,100x+40x=300,解得:x=②当3<x≤

15 ······································ 16分 727时,(540-80x)+40x=300,解得:x=6 ························· 20分 415小时或6小时时,两车相遇 715 ··························································· 16分 7综上所述,当它们行驶了

方法二:设经过x1小时两车首次相遇 则40x1+100x1=300,解得:x1=设经过x2小时两车第二次相遇

则80(x2-3)=40x2,解得:x2=6 ······························································· 20分

7.(安徽省合肥一中自主招生)如图1,在△ABC中,AB=BC,且BC≠AC,在△ABC上画一条直线,若

2014中考数学压轴题精编----安徽篇

7

2014中考数学压轴题精编----安徽篇

这条直线既平分△ABC的面积,又平分△ABC的周长,我们称这条线为△ABC的“等分积周线”. ..

(1)请你在图1中用尺规作图作出一条△ABC的“等分积周线”;

(2)在图1中过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由; (3)如图2,若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要说明确定的方法. A A

B C B C 7.解:

图1

图2 (1)图略,作线段AC的中垂线BD即可 ······························································· 2分 (2)不能

如图1,若直线CD平分△ABC的面积 A 那么SE △ADC

=S△DBC

12AD·CE=12BD·CE D ∴AD=BD ················································ 5分 B C ∵AC≠BC,∴AD+AC≠BD+BC

图1

∴过点C不能画出一条“等分积周线” ························································· 7分 (3)①若直线经过顶点,则AC边上的中垂线即为所求线段 ································ 8分

②若直线不过顶点,可分以下三种情况: (a)直线与BC、AC分别交于E、F,如图2所示

A F

过点E作EH⊥AC于点H,过点B作BG⊥AC于点G 易求得BG=4,AG=CG=3 G 设CF=x,则CE=8-x H 由△CEH∽△CBG,可得EH=45(8-x) B E C

根据面积相等,可得

12·x·45(8-x)=6 ····················· 10分 图2

∴x=3(舍去,即为①)或x=5

∴CF=5,CE=3,直线EF即为所求直线 ················································· 12分 (b)直线与AB、AC分别交于M、N,如图3所示

由(a)可得AM=3,AN=5,直线MN即为所求直线 A (仿照上面给分) ·························································· 15分 (c)直线与AB、BC分别交于P、Q,如图4所示

M 2014中考数学压轴题精编----安徽篇

N

B C

图3

8

2014中考数学压轴题精编----安徽篇

过点A作AY⊥BC于点Y,过点P作PX⊥BC于点X 24 5设BP=x,则BQ=8-x

由面积法可得AY=

24由相似,可得PX=x

25A 据面积相等,可得∴x=

124·x·(8-x)=6 ······················· 17分 225P Q C

图4

814814>5(舍去)或x= 22814814而当BP=时,BQ=>5,舍去

22B X Y

∴此种情况不存在 ························································································ 19分 综上所述,符合条件的直线共有三条 ························································· 20分 (注:若直接按与两边相交的情况分类,也相应给分)

8.(安徽省合肥一中自主招生)如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速

度沿AC边由A向C运动,点Q以1cm/s的速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s). (1)若点P以

3cm/s的速度运动 4①当PQ∥AB时,求t的值;

②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.

(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB相切?若能,请

求出运动时间t;若不能,请说明理由.

A A

P

B B C C Q 备用图

8.解:

(1)①如图1,当PQ∥AB时,有

CQPC ···················2分 =

ACCBA 3即

3tt4=,解得:t=2 432014中考数学压轴题精编----安徽篇

P ∴当t=2秒时,PQ∥AB ·········································5分

C Q 图1

B

9

2014中考数学压轴题精编----安徽篇

②解法1:如图2,当t=2秒时,PQ∥AB,此时PQ为 △ACB的中位线,PQ=

5 ········································6分 2取PQ的中点M,则以PQ为直径的圆的圆心为M, 半径为

1PQ ······························································8分 2A H P M C A Q 图2 H P M C A Q 图3

B B

N 过点M、C向AB作垂线,垂足分别为N、H 则CH=∵MN<

1216,MN=CH= ································ 10分 5251PQ,∴直线AB与以PQ为直径的圆相交 2 ··························································· 12分

解法2:如图3,当t=2秒时,PQ∥AB,此时PQ为 △ACB的中位线,取PQ的中点M,分别过点M、C向 AB作垂线,垂足分别为N、H,CH交PQ于点G,连接CM 1∵MN=CH,即MN=GH=CG

2N 在Rt△CGM中,GC<MC,∴MN<MC

∴直线AB与以PQ为直径的圆相交 ····················· 12分 解法3:如图4,当t=2秒时,PQ∥AB,此时PQ为△ACB 的中位线,过点Q向AB作垂线,垂足为N, 则Rt△BNQ∽Rt△BCA,∴6∴NQ=

5P M C 61,小于PQ 52BQNQNQ2,即=, =

5ABAC3N B

Q 图4

由平行线间的距离处处相等可知,点M到AB的距离为

∴直线AB与以PQ为直径的圆相交 ··························································· 12分

(2)解法1:如图5,取PQ的中点M,作MN⊥AB、PG⊥AB、QH⊥AB,垂足分别为N、G、H

则由Rt△APG∽Rt△ABC,得PG=由Rt△BHQ∽Rt△BCA,得HQ=

4t ················ 14分 5

A P G N H M 3(4-t) ··········· 16分 56t+ 510此时MN是梯形PGHQ的中位线,∴MN=

2

2

··························································· 20分

当PQ =4MN 时,以PQ为直径的圆与直线AB相切

6t222

即(3-t)+t=4(+) ··································· 26分

510

C Q 图5

B 解得:t1=3,t2=

27 ····················································································· 30分 4910

2014中考数学压轴题精编----安徽篇

2014中考数学压轴题精编----安徽篇

解法2:如图6,取PQ的中点M,作MH⊥AB、MG⊥AC、MN⊥BC,垂足分别为H、G、N 连接AM、BM、CM

由S△ABC=S△ACM+S△BCM +S△ABM 可得:

A P M H 1t1111×3×+×4×(3-t)+×5×MH=×3×4 222222

6t解得:MH=+

510G 当PQ =4MN 时,以PQ为直径的圆与直线AB相切

226t2

即(3-t)+t=4(+) ··································· 26分

510

22

C N Q 图6

B 27 ··············································· 30分 49解法3:如图7,取PQ的中点M,作MH⊥AB、MN⊥BC,垂足分别为H、N,延长NM交解得:t1=3,t2=AB于点G,则MN=

111ttPC=(3-t),NQ=CQ=,∴NB=4- 22222

33131由Rt△BGN∽Rt△BAC,得GN=3-t,∴GM=3-t-(3-t)=+t

2288831tMHGMMH28 又∵Rt△GMH∽Rt△ABC,∴,即==

5BCAB4解得:MH=

2

6t+ 5102

当PQ =4MN 时,以PQ为直径的圆与直线AB相切

6t222

即(3-t)+t=4(+) ··································· 26分

510

A G P H M B

图7

解得:t1=3,t2=

27 ··············································· 30分 49C N Q 9.(安徽省蚌埠二中自主招生)青海玉树发生7.1级强震后,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风。刚回营地的两个抢险分队又接到救灾命令,一分队立即出发前往距营地30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再前往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路。已知一分队的行进速度为b千米/时,二分队的行进速度为(4+a)千米/时.

(1)若二分队在营地不休息,要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时? (2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?

9.解:

(1)若二分队应在营地不休息,则a=0,速度为4千米/时,行至塌方处需因为一分队到塌方处并打通道路需要

10=2.5(小时) 410+1(小时) ················································ 3分 b11

2014中考数学压轴题精编----安徽篇

2014中考数学压轴题精编----安徽篇

所以要使二分队在最短时间内赶到A镇,则有:

1020+1≤2.5,∴b≥(千米/时) b3 ················································································································ 5分

故一分队的行进速度至少为

20千米/时3分 ································································ 6分 310+1=3.5(小时) 4(2)若b=4千米/时,则一分队到塌方处并打通道路需要一分队赶到A镇共需

30+1=8.5(小时) ································································ 8分 4(Ⅰ)若二分队在营地不休息,且在塌方处需停留,则后20千米与一分队同行,二分队和一分队可同时赶到A镇; ·········································································································· 10分 (Ⅱ)若二分队在营地休息,则a>0,二分队的行进速度为4+a>4千米/时

①若二分队在塌方处需停留,则当一分队打通道路后,二分队将先赶到A镇,不符合题意,舍去;

·············································································································· 11分

②若二分队在塌方处不停留,要使二分队和一分队同时赶到A镇,则有: a+

230=8.5,即a-4.5a-4=0 4a

解得a1=

4.536.254.536.2546<0(舍去),a2=>>3(舍去)

222 ·············································································································· 13分

综上所述,要使二分队和一分队同时赶到A镇,二分队应在营地不休息 ··············· 14分

10.(安徽省蚌埠二中自主招生)如图1、2是两个相似比为1 :2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.

(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4.

求证:AE +BF =EF ;

(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE +BF =EF 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

C C

D A B A D

图1 图2 图3

C C

F

E D A

2014中考数学压轴题精编----安徽篇 D B A

2

2

2

2

2

2

B

E 图5

F B

12

图4

2014中考数学压轴题精编----安徽篇

(3)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由. ;

A D

N

F

M 10.解:

(1)如图4,由于AD=BD,将△AED绕点D旋转180°,得△BE′D 则AE=BE′,ED=E′D,连接E′F

∵∠FBE′=∠ABC+∠ABE′=∠ABC+∠CAB=90°

222

∴在Rt△BE′F中有BE′ +BF =E′F

B E C

C F E D 图4 C E′ E′

B

又∵FD垂直平分EE′,∴EF=E′F

∴AE +BF =EF ························································· 6分

2

2

2

A (2)如图5,由于AC=BC,将△AEC绕点C旋转90°,得△BE′C 则AE=BE′,CE=CE′,连接E′F

∵∠FBE′=∠ABC+∠CBE′=∠ABC+∠CAB=90°

222∴在Rt△BE′F中有BE′ +BF =E′F

∵∠E′CF=∠E′CB+∠BCF=∠ACE+∠BCF

=90°-∠ECF=90°-45°=45°=∠ECF

CE=CE′,CF=CF

∴△CEF≌△CE′F,∴EF=E′F

2

2

2

D A

E 图5

F

B

∴AE +BF =EF ······································································································· 12分 (3)将△ADF绕点A顺时针旋转90°,得△ABG,且FD=GB,AF=AG 因为△CEF的周长等于正方形ABCD的周长的一半,所以 CE+EF+CF=CD+CB=CF+FD+CE+BE ∴EF=FD+BE=GB+BE=GE

从而可得△AEG≌△AEF,∴∠EAG=∠EAF 又∵∠EAG=∠EAB+∠BAG,∠BAG=∠DAF

2014中考数学压轴题精编----安徽篇

A N D

F

M G B E

C

13

2014中考数学压轴题精编----安徽篇

∴∠EAF=∠EAB+∠DAF,而∠EAB+∠EAF+∠DAF=90° ∴∠EAF=45°

由(2)知BM2

2

+DN =MN2

∴由勾股定理的逆定理知:线段BM、MN、DN能构成直角三角形 ························ 18分

2014中考数学压轴题精编----安徽篇

14

因篇幅问题不能全部显示,请点此查看更多更全内容