2014中考数学压轴题精编----安徽篇
1.(安徽省)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1. (1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由. A A1
bc c1 b1
B1 C1 B C aa1
1.解(1)证:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴
a=k,∴a=ka1 a1又∵c=a1,∴a=kc ········································································································ 3分 (2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2 ······································· 8分
abc此时===2,∴△ABC∽△A1B1C1且c=a1 ··············································· 10分
a1b1c1注:本题也是开放型的,只要给出的△ABC和△A1B1C1符合要求就相应赋分. (3)解:不存在这样的△ABC和△A1B1C1.理由如下: 若k=2,则a=2a1,b=2b1,c=2c1 又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c
∴b=2c ·························································································································· 12分 ∴b+c=2c+c=3c<4c=a,而b+c>a
故不存在这样的△ABC和△A1B1C1,使得k=2. ······················································· 14分
注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下k=2的情况不可能即可.
2.(安徽省B卷)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结OG.
F (1)判断OG与CD的位置关系,写出你的结论并证明;
(2)求证:AE=BF; C G (3)若OG·DE=3(2-2),求⊙O的面积. D
E A B O
2014中考数学压轴题精编----安徽篇
1
2014中考数学压轴题精编----安徽篇
.解:
(1)猜想:OG⊥CD.
证明:如图,连结OC、OD,则OC=OD.
F ∵G是CD的中点
C G ∴由等腰三角形的性质,有OG⊥CD. ······················ 2分
D (2)证明:∵AB是⊙O的直径,∴∠ACB=90°.
E H 而∠CAE=∠CBF(同弧所对的圆周角相等). A O
B
在Rt△ACE和Rt△BCF中
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF ∴Rt△ACE≌Rt△BCF.(ASA)
∴AE=BF. ·································································································· 6分
(3)解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.
∴OH=
12AD,即AD=2OH. 又∠CAD=∠BAD,∴CD=∠BD,∴OH=OG.
在Rt△BDE和Rt△ADB中
∵∠DBE=∠DAC=∠BAD,∴Rt△BDE∽Rt△ADB. ∴
BDDEAD=
DB,即BD2 =AD·DE. ∴BD2
=AD·DE=2OG·DE=6(2-2). ················································· 8分 又BD=FD,∴BF=2BD.
∴BF22
=4BD =24(2-2).„„„„„„„„„„„„„„①. ·········· 9分 设AC=x,则BC=x,AB=2x.
∵AD是∠BAC的平分线,∴∠FAD=∠BAD. 在Rt△ABD和Rt△AFD中
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD ∴Rt△ABD≌Rt△AFD.(ASA) ∴AF=AB=2x,BD=FD.
∴CF=AF-AC=2x-x=(2-1)x. 在Rt△BCF中,由勾股定理,得
BF2222 =BC +CF =x+[(2-1)x]2=2(2-2)x2
.„„„„②. ········ 10分
由①、②,得2(2-2)x2
=24(2-2).
∴x2
=12,∴x=23或-23(舍去).
2014中考数学压轴题精编----安徽篇
2
2
2014中考数学压轴题精编----安徽篇
∴AB=2x=2·23=26.
∴⊙O的半径长为6. ·············································································· 11分 ∴S⊙O=π
·(
2
6)=6π. ·········································································· 12分
2
3.(安徽省B卷)已知:抛物线y=ax+bx+c(a≠0)的对称轴为x=-1,与x轴交于A、B两点,与y轴交于点C,其中A(-3,0)、C(0,-2). (1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
3.解:
y A O B x C b-2a =-1(1)由题意得9a-3b+c =0 ··················································································· 2分
c =-224解得a=,b=,c=-2.
33224∴这条抛物线的函数表达式为y=x+x-2 ············································ 4分
33
(2)如图,连结AC、BC.
由于BC的长度一定,要使△PBC的周长最小,必须使PB+PC最小. 点B关于对称轴的对称点是点A,AC与对称轴x=-1的交点即为所求的点P. 设直线AC的表达式为y=kx+b,则
-3k+b= 0····························································· 6分 b= -2y 解得k=-
A 2∴直线AC的表达式为y=-x-2 ······································· 7分 32,b=-2. 3E O D P C 3
B x 2014中考数学压轴题精编----安徽篇
2014中考数学压轴题精编----安徽篇
把x=-1代入上式,得y=-∴点P的坐标为(-1,-
24×(-1)-2=-. 334) ········································································· 8分 3(3)S存在最大值,理由如下:
∵DE∥PC,即DE∥AC,∴△OED∽△OAC.
OEOAOE333,即==,∴OE=3-m,∴AE=m.
222ODOC2-m方法一:
∴
连结OP
S=S△POE+S△POD-S△OED
134113=×(3-m)×+×(2-m)×1-×(3-m)×(2-m) 223222=-∵-
323m+m ···························································································· 10分 42
3<0,∴S存在最大值. ······································································ 11分 4232333m+m=-(m-1)+ 4244
∵S=-
∴当m=1时,S最大=方法二:
3. ··········································································· 12分 4S=S△OAC-S△OED-S△PAE-S△PCD
1131341=×3×2-×(3-m)×(2-m)-×m×-×m×1 2222232
=-
323m+m ···························································································· 10分 42
以下同方法一.
4.(安徽省芜湖市)(本小题满分12分)如图,BD是⊙O的直径,OA⊥OB,M是劣弧上一点,过M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点. (1)求证:PM=PN; (2)若BD=4,PA= 4.解:
(1)证明:连接OM ············································· 1分
∵MP是⊙O的切线,∴OM⊥MP ∴∠OMD+∠DMP=90°
2014中考数学压轴题精编----安徽篇
4 3B M AO,过B点作BC∥MP交⊙O于C点,求BC的长.2C N B O M E C O D N A A P P D 2014中考数学压轴题精编----安徽篇
∵OA⊥OB,∴∠OND+∠ODM=90° 又∵∠MNP=∠OND,∠ODM=∠OMD ∴∠DMP=∠MNP,∴PM=PN ···················· 4分 (2)解:设BC交OM于点E,∵BD=4,∴OA=OB=
∴PA=
1BD=2 23AO=3,∴PO=5 ··················································································· 5分 21BC ·············································· 7分 2∵∠BOM+∠MOP=90°,在Rt△OMP中,∠MPO+∠MOP=90°
∵BC∥MP,OM⊥MP,∴OM⊥BC,∴BE=
∴∠BOM=∠MPO,又∵∠BEO=∠OMP=90° ∴△OMP∽△BEO,∴得:
OMBE ······································································ 10分 =
OPBO2BE48,∴BE=,∴BC= ································································· 12分 =
55525.(安徽省芜湖市)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-33,1)、C(-33,0)、O(0,0).将此矩形沿着过E(-3,1)、F(-C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
43,0)的直线EF向右下方翻折,B、3(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.
y
E B A C F O x
5.解:
(1)由于折痕所在直线EF过E(-3,1)、F(-∴tan∠EFO=3,直线EF的倾斜角为60° ∴直线EF的解析式为:y-=tan60°[x-(-3)]
化简得:y=3x+4. ································································································· 3分
2014中考数学压轴题精编----安徽篇
5
43,0) 32014中考数学压轴题精编----安徽篇
(2)设矩形沿直线EF向右下方翻折后,B、C的对应点为B′(x1,y1),C′(x2,y2) 过B′作B′A′⊥AE交AE所在直线于A′点
∵B′E=BE=23,∠B′EF=∠BEF=60° ∴∠B′EA′=60°,∴A′E=3,B′A′=3
∴A与A′重合,B′在y轴上,∴x1=0,y1=-2,即B′(0,-2)
【此时需说明B′(x1,y1)在y轴上】 ········································································ 6分 设二次函数的解析式为:y=ax+bx+c
2
∵抛物线经过B(-33,1)、E(-3,1)、B′(0,-2)
1a = -327a-33b+c=14∴3a-3b+c=1 解得b = -3
3c=-2
c = -2124∴该二次函数解析式为:y=-x-·························································· 9分 3x-2 ·
33
(3)能,可以在直线EF上找到P点,连接B′C交EF于P点,再连接BP 由于B′P=BP,此时点P与C、B′在一条直线上,故BP+PC=B′P+PC的和最小
由于为BC定长所以满足△PBC周长最小.······························································ 10分 设直线B′C的解析式为:y=kx+b 23-2 = bk = -则 解得9 0 = -33k + bb = -2 y 23x-2 9 ···················································· 12分
又∵点P为直线B′C与直线EF的交点
∴直线B′C的解析式为:y=-
B C F E O P A′ A x B′ C′ 1823x = -3x-2y = -11∴ 解得 910y = 3x+4y = -11 ∴点P的坐标为(-
1810········································································ 14分 3,-)·
11116.(安徽省合肥一中自主招生)已知:甲、乙两车分别从相距300(km)的M、N两地同时出发相向而行,
其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)试求线段AB所对应的函数关系式,并写出自变量的取值范围; (2)当它们行驶到与各自出发地的距离相等时,用了
9h,求乙车的速度; 26
2014中考数学压轴题精编----安徽篇
2014中考数学压轴题精编----安徽篇
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
y∕km y∕km
A 300 300 甲
6.解:
B 274 乙 C O 3 图1
x∕h
O 图2
x∕h
(1)设线段AB所对应的函数关系式为y=kx+b
300=3k+bk=-8027把(3,300),(,0)代入得 解得 270=k+bb=54044∴线段AB所对应的函数关系式为y甲=-80x+540 ···································· 5分 自变量x的取值范围是3<x≤(2)∵x=
2727(或3≤x≤,下同) ·························· 7分 449279在3<x≤中,∴把x=代入y甲=-80x+540中得y甲=180 224180=40(km/h) ······························································· 12分 92∴乙车的速度为
(3)由题意知有两次相遇
方法一:
①当0≤x≤3时,100x+40x=300,解得:x=②当3<x≤
15 ······································ 16分 727时,(540-80x)+40x=300,解得:x=6 ························· 20分 415小时或6小时时,两车相遇 715 ··························································· 16分 7综上所述,当它们行驶了
方法二:设经过x1小时两车首次相遇 则40x1+100x1=300,解得:x1=设经过x2小时两车第二次相遇
则80(x2-3)=40x2,解得:x2=6 ······························································· 20分
7.(安徽省合肥一中自主招生)如图1,在△ABC中,AB=BC,且BC≠AC,在△ABC上画一条直线,若
2014中考数学压轴题精编----安徽篇
7
2014中考数学压轴题精编----安徽篇
这条直线既平分△ABC的面积,又平分△ABC的周长,我们称这条线为△ABC的“等分积周线”. ..
(1)请你在图1中用尺规作图作出一条△ABC的“等分积周线”;
(2)在图1中过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由; (3)如图2,若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要说明确定的方法. A A
B C B C 7.解:
图1
图2 (1)图略,作线段AC的中垂线BD即可 ······························································· 2分 (2)不能
如图1,若直线CD平分△ABC的面积 A 那么SE △ADC
=S△DBC
∴
12AD·CE=12BD·CE D ∴AD=BD ················································ 5分 B C ∵AC≠BC,∴AD+AC≠BD+BC
图1
∴过点C不能画出一条“等分积周线” ························································· 7分 (3)①若直线经过顶点,则AC边上的中垂线即为所求线段 ································ 8分
②若直线不过顶点,可分以下三种情况: (a)直线与BC、AC分别交于E、F,如图2所示
A F
过点E作EH⊥AC于点H,过点B作BG⊥AC于点G 易求得BG=4,AG=CG=3 G 设CF=x,则CE=8-x H 由△CEH∽△CBG,可得EH=45(8-x) B E C
根据面积相等,可得
12·x·45(8-x)=6 ····················· 10分 图2
∴x=3(舍去,即为①)或x=5
∴CF=5,CE=3,直线EF即为所求直线 ················································· 12分 (b)直线与AB、AC分别交于M、N,如图3所示
由(a)可得AM=3,AN=5,直线MN即为所求直线 A (仿照上面给分) ·························································· 15分 (c)直线与AB、BC分别交于P、Q,如图4所示
M 2014中考数学压轴题精编----安徽篇
N
B C
图3
8
2014中考数学压轴题精编----安徽篇
过点A作AY⊥BC于点Y,过点P作PX⊥BC于点X 24 5设BP=x,则BQ=8-x
由面积法可得AY=
24由相似,可得PX=x
25A 据面积相等,可得∴x=
124·x·(8-x)=6 ······················· 17分 225P Q C
图4
814814>5(舍去)或x= 22814814而当BP=时,BQ=>5,舍去
22B X Y
∴此种情况不存在 ························································································ 19分 综上所述,符合条件的直线共有三条 ························································· 20分 (注:若直接按与两边相交的情况分类,也相应给分)
8.(安徽省合肥一中自主招生)如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速
度沿AC边由A向C运动,点Q以1cm/s的速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s). (1)若点P以
3cm/s的速度运动 4①当PQ∥AB时,求t的值;
②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.
(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB相切?若能,请
求出运动时间t;若不能,请说明理由.
A A
P
B B C C Q 备用图
8.解:
(1)①如图1,当PQ∥AB时,有
CQPC ···················2分 =
ACCBA 3即
3tt4=,解得:t=2 432014中考数学压轴题精编----安徽篇
P ∴当t=2秒时,PQ∥AB ·········································5分
C Q 图1
B
9
2014中考数学压轴题精编----安徽篇
②解法1:如图2,当t=2秒时,PQ∥AB,此时PQ为 △ACB的中位线,PQ=
5 ········································6分 2取PQ的中点M,则以PQ为直径的圆的圆心为M, 半径为
1PQ ······························································8分 2A H P M C A Q 图2 H P M C A Q 图3
B B
N 过点M、C向AB作垂线,垂足分别为N、H 则CH=∵MN<
1216,MN=CH= ································ 10分 5251PQ,∴直线AB与以PQ为直径的圆相交 2 ··························································· 12分
解法2:如图3,当t=2秒时,PQ∥AB,此时PQ为 △ACB的中位线,取PQ的中点M,分别过点M、C向 AB作垂线,垂足分别为N、H,CH交PQ于点G,连接CM 1∵MN=CH,即MN=GH=CG
2N 在Rt△CGM中,GC<MC,∴MN<MC
∴直线AB与以PQ为直径的圆相交 ····················· 12分 解法3:如图4,当t=2秒时,PQ∥AB,此时PQ为△ACB 的中位线,过点Q向AB作垂线,垂足为N, 则Rt△BNQ∽Rt△BCA,∴6∴NQ=
5P M C 61,小于PQ 52BQNQNQ2,即=, =
5ABAC3N B
Q 图4
由平行线间的距离处处相等可知,点M到AB的距离为
∴直线AB与以PQ为直径的圆相交 ··························································· 12分
(2)解法1:如图5,取PQ的中点M,作MN⊥AB、PG⊥AB、QH⊥AB,垂足分别为N、G、H
则由Rt△APG∽Rt△ABC,得PG=由Rt△BHQ∽Rt△BCA,得HQ=
4t ················ 14分 5
A P G N H M 3(4-t) ··········· 16分 56t+ 510此时MN是梯形PGHQ的中位线,∴MN=
2
2
··························································· 20分
当PQ =4MN 时,以PQ为直径的圆与直线AB相切
6t222
即(3-t)+t=4(+) ··································· 26分
510
C Q 图5
B 解得:t1=3,t2=
27 ····················································································· 30分 4910
2014中考数学压轴题精编----安徽篇
2014中考数学压轴题精编----安徽篇
解法2:如图6,取PQ的中点M,作MH⊥AB、MG⊥AC、MN⊥BC,垂足分别为H、G、N 连接AM、BM、CM
由S△ABC=S△ACM+S△BCM +S△ABM 可得:
A P M H 1t1111×3×+×4×(3-t)+×5×MH=×3×4 222222
6t解得:MH=+
510G 当PQ =4MN 时,以PQ为直径的圆与直线AB相切
226t2
即(3-t)+t=4(+) ··································· 26分
510
22
C N Q 图6
B 27 ··············································· 30分 49解法3:如图7,取PQ的中点M,作MH⊥AB、MN⊥BC,垂足分别为H、N,延长NM交解得:t1=3,t2=AB于点G,则MN=
111ttPC=(3-t),NQ=CQ=,∴NB=4- 22222
33131由Rt△BGN∽Rt△BAC,得GN=3-t,∴GM=3-t-(3-t)=+t
2288831tMHGMMH28 又∵Rt△GMH∽Rt△ABC,∴,即==
5BCAB4解得:MH=
2
6t+ 5102
当PQ =4MN 时,以PQ为直径的圆与直线AB相切
6t222
即(3-t)+t=4(+) ··································· 26分
510
A G P H M B
图7
解得:t1=3,t2=
27 ··············································· 30分 49C N Q 9.(安徽省蚌埠二中自主招生)青海玉树发生7.1级强震后,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风。刚回营地的两个抢险分队又接到救灾命令,一分队立即出发前往距营地30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再前往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路。已知一分队的行进速度为b千米/时,二分队的行进速度为(4+a)千米/时.
(1)若二分队在营地不休息,要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时? (2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?
9.解:
(1)若二分队应在营地不休息,则a=0,速度为4千米/时,行至塌方处需因为一分队到塌方处并打通道路需要
10=2.5(小时) 410+1(小时) ················································ 3分 b11
2014中考数学压轴题精编----安徽篇
2014中考数学压轴题精编----安徽篇
所以要使二分队在最短时间内赶到A镇,则有:
1020+1≤2.5,∴b≥(千米/时) b3 ················································································································ 5分
故一分队的行进速度至少为
20千米/时3分 ································································ 6分 310+1=3.5(小时) 4(2)若b=4千米/时,则一分队到塌方处并打通道路需要一分队赶到A镇共需
30+1=8.5(小时) ································································ 8分 4(Ⅰ)若二分队在营地不休息,且在塌方处需停留,则后20千米与一分队同行,二分队和一分队可同时赶到A镇; ·········································································································· 10分 (Ⅱ)若二分队在营地休息,则a>0,二分队的行进速度为4+a>4千米/时
①若二分队在塌方处需停留,则当一分队打通道路后,二分队将先赶到A镇,不符合题意,舍去;
·············································································································· 11分
②若二分队在塌方处不停留,要使二分队和一分队同时赶到A镇,则有: a+
230=8.5,即a-4.5a-4=0 4a
解得a1=
4.536.254.536.2546<0(舍去),a2=>>3(舍去)
222 ·············································································································· 13分
综上所述,要使二分队和一分队同时赶到A镇,二分队应在营地不休息 ··············· 14分
10.(安徽省蚌埠二中自主招生)如图1、2是两个相似比为1 :2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4.
求证:AE +BF =EF ;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE +BF =EF 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
C C
D A B A D
图1 图2 图3
C C
F
E D A
2014中考数学压轴题精编----安徽篇 D B A
2
2
2
2
2
2
B
E 图5
F B
12
图4
2014中考数学压轴题精编----安徽篇
(3)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由. ;
A D
N
F
M 10.解:
(1)如图4,由于AD=BD,将△AED绕点D旋转180°,得△BE′D 则AE=BE′,ED=E′D,连接E′F
∵∠FBE′=∠ABC+∠ABE′=∠ABC+∠CAB=90°
222
∴在Rt△BE′F中有BE′ +BF =E′F
B E C
C F E D 图4 C E′ E′
B
又∵FD垂直平分EE′,∴EF=E′F
∴AE +BF =EF ························································· 6分
2
2
2
A (2)如图5,由于AC=BC,将△AEC绕点C旋转90°,得△BE′C 则AE=BE′,CE=CE′,连接E′F
∵∠FBE′=∠ABC+∠CBE′=∠ABC+∠CAB=90°
222∴在Rt△BE′F中有BE′ +BF =E′F
∵∠E′CF=∠E′CB+∠BCF=∠ACE+∠BCF
=90°-∠ECF=90°-45°=45°=∠ECF
CE=CE′,CF=CF
∴△CEF≌△CE′F,∴EF=E′F
2
2
2
D A
E 图5
F
B
∴AE +BF =EF ······································································································· 12分 (3)将△ADF绕点A顺时针旋转90°,得△ABG,且FD=GB,AF=AG 因为△CEF的周长等于正方形ABCD的周长的一半,所以 CE+EF+CF=CD+CB=CF+FD+CE+BE ∴EF=FD+BE=GB+BE=GE
从而可得△AEG≌△AEF,∴∠EAG=∠EAF 又∵∠EAG=∠EAB+∠BAG,∠BAG=∠DAF
2014中考数学压轴题精编----安徽篇
A N D
F
M G B E
C
13
2014中考数学压轴题精编----安徽篇
∴∠EAF=∠EAB+∠DAF,而∠EAB+∠EAF+∠DAF=90° ∴∠EAF=45°
由(2)知BM2
2
+DN =MN2
∴由勾股定理的逆定理知:线段BM、MN、DN能构成直角三角形 ························ 18分
2014中考数学压轴题精编----安徽篇
14
因篇幅问题不能全部显示,请点此查看更多更全内容