您的当前位置:首页正文

GPS测量中坐标系统、坐标系的转换过程

2023-11-07 来源:汇智旅游网
GPS测量中坐标系统、坐标系的转换过程

赵永春

天津港湾水运工程有限公司

摘 要:GPS在测量领域得到了广泛的应用,本文介绍将GPS所采集到的WGS-84

坐标转换成工程所需的坐标的过程。

关键词:GPS 坐标系统 坐标系 转换

一、概述GPS及其应用

GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。GPS以测量精度高; 操作简便,仪器体积小,便于携带; 全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。

二、GPS测量常用的坐标系统

1、1984世界大地坐标系

WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。

2、1954北京坐标系

1954北京坐标系是将我国大地控制网与前苏联1942年普尔科沃大地坐标系相联结后建立的我国过渡性大地坐标系。属于参心大地坐标系,采用了前苏联的

克拉索夫斯基椭球体。其长半轴 a=6378245,扁率 f=1/298.3。1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。

3、1980西安坐标系

1978年,我国决定建立新的国家大地坐标系统,并且在新的大地坐标系统中进行全国天文大地网的整体平差,这个坐标系统定名为1980年西安坐标系。属参心大地坐标系。1980年西安坐标系Xi'an Geodetic Coordinate System 1980 采用1975国际椭球,以JYD 1968.0系统为椭球定向基准,大地原点设在陕西省泾阳县永乐镇,采用多点定位所建立的大地坐标系.其椭球参数采用1975年国际大地测量与地球物理联合会推荐值,它们为:其长半轴a=6378140m; 扁率f=1/298.257。

4 高斯平面直角坐标系和UTM

一般的地图均为平面图,其对应的也是平面坐标.因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标.目前世界各国采用最广泛的高斯- 克吕格投影和墨卡托投影(UTM)均是正形投影(等角投影), 即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。为了限制长度变形,,根据国际测量协会规定,将全球按一定经差分成若干带。我国采用6度带或3度带,6度带是自零度子午线起每隔经度。

高斯平面直角坐标系一般以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,在投影中规定将坐标纵轴西移500公里当作起始轴。为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。 城建坐标多采用三度带的高斯-克吕格投影。同一坐标系下的大地坐标(即经纬度坐标B,L)与其对应的高斯平面直角坐标(x,y)有严格的转换关系。现行的测绘的教科书的一般都有。

5、 地方独立坐标系

在我国许多城市测量与工程测量中,若直接采用国家坐标系下的高斯平面直角坐标,则可能会由于远离中央子午线,或由于测区平均高程较大,而导致长度投影变形较大,难以满足工程上或实用上的精度要求。另一方面,对于一些特殊的测量,如大桥施工测量,水利水坝测量,滑坡变形监测等,采用国家坐标系在实用中也会很不方便。因此,基于限制变形,以及方便实用,科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系。建立地方独立坐标系,实际上就是通过一些元素的确定来决定地方参考椭球与投影面.地方参考椭球一般选择与当地平均高程相对应的参考椭球,该椭球的中心,轴向和扁率与国家参考椭球相同。其椭球半径α1增大为:α1=α+Δα1,Δα1=Hm+ζ0式中:Hm为当地平均海拔高程,ζ0为该地区的平均高程异常。而地方投影面的确定中,选取过测区中心的经线或某个起算点的经线作为独立中央子午线.以某个特定方便使用的点和方位为地方独立坐标系的起算原点和方位,并选取当地平均高程面Hm为投影面。

三、坐标系统的转换

在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。

目前一般采用布尔莎公式(七参数法)完成WGS-84坐标系到北京54坐标系的转换,得到北京54坐标数据。

XBJ54=XWGS84+ KXWGS84+Δx+YWGS84ξZ"/ρ"-ZWGS84ξY"/ρ"

YBJ54=YWGS84+ KYWGS84+ΔY-XWGS84ξZ"/ρ"+ZWGS84ξX"/ρ"

ZBJ54=ZWGS84+ KZWGS84+ΔZ+XWGS84ξY"/ρ"-ZWGS84ξX"/ρ"

四、坐标系的变换

同一坐标系统下坐标有多种不同的表现形式,一种形式实际上就是一种坐标系。如空间直角坐标系(X,Y,Z)、大地坐标系(B,L)、平面直角坐标(x,y)等。通过坐标统的转换我们得到了BJ54坐标系统下的空间直角坐标,我们还须在BJ54坐标系统下再进行各种坐标系的转换,直至得到工程所需的坐标。

1.将空间直角坐标系转换成大地坐标系,得到大地坐标(B,L):

L=arctan(Y/X)

B=arctan {(Z+Ne2sinB)/(X2+Y2)0.5}

H=(X2+Y2)0.5sinB-N

用上式采用迭代法求出大地坐标(B,L)

2.将大地坐标系转换成高斯坐标系,得到高斯坐标(x,y)

按高斯投影的方法求得高斯坐标,x=F1(B,L),y=F2(B,L)

3.将高斯坐标系转换成任意独立坐标系,得到独立坐标(x’,y’)

在小范围内测量,我们可以将地面当作平面,用简单的旋转、平移便可将高斯坐标换成工程中所采用坐标系的坐标(x’,y’),

x’=xcosα+ysinα

y’=ycosα-xsinα

五、小结

由于GPS测量的种种优点,GPS 定位技术现已基本上取代了常规测量手段成为了主要的技术手段,市面上出现了许多转换软件和不同型号的GPS数据处理配套软件(包含了怎样将GPS测量中所得到的WGS-84转换成工程中所须坐标的功能),万变不离其宗,只要我们明白了WGS-84转换到独立坐标系的转换过程,便可很容易的使用该软件了,甚至可以自己编写程序,将WGS-84坐标转换成独立坐标系坐标。

本文主要是介绍坐标系统、坐标系的转换过程,文中提及的符号及具体转换方法请参阅相关文献。

参考文献

[1] 徐绍铨等.GPS测量原理及应用(3S丛书).武汉测绘科技大学出版社.1998.

[2] 朱华统等.GPS坐标系统的变换.北京测绘出版社.1994.

[3] 武汉测绘学院等.控制测量学(下).测绘出版社.1988.

[4] 杨德麟等.大比例尺数字测图的原理方法与应用.清华大学出版社.1998.

因篇幅问题不能全部显示,请点此查看更多更全内容